JupyterLab é uma interface de usuário baseada na Web para Projeto Jupyter e está totalmente integrado ao Adobe Experience Platform. Ele fornece um ambiente de desenvolvimento interativo para cientistas de dados trabalharem com notebooks, códigos e dados Jupyter.
Este documento fornece uma visão geral de JupyterLab e seus recursos, bem como instruções para executar ações comuns.
A integração do Experience Platform JupyterLab é acompanhada de alterações de arquitetura, considerações de design, extensões personalizadas de notebooks, bibliotecas pré-instaladas e uma interface com tema Adobe.
A lista a seguir descreve alguns dos recursos exclusivos do JupyterLab na plataforma:
Recurso | Descrição |
---|---|
Kernels | Os kernels fornecem notebook e outros JupyterLab O front-end é a capacidade de executar e introduzir código em diferentes linguagens de programação. Experience Platform O fornece kernels adicionais para suportar o desenvolvimento no Python, R, PySpark e Spark. Consulte a kernels para obter mais detalhes. |
Acesso aos dados | Acessar conjuntos de dados existentes diretamente do JupyterLab com suporte total para recursos de leitura e gravação. |
Platformintegração de serviços | As integrações integradas permitem utilizar outros Platform serviços diretamente de dentro JupyterLab. Uma lista completa de integrações compatíveis é fornecida na seção sobre Integração com outros serviços da plataforma. |
Autenticação | Além de Modelo de segurança integrado do JupyterLab, todas as interações entre seu aplicativo e o Experience Platform, incluindo a comunicação serviço-a-serviço da Platform, são criptografadas e autenticadas por meio da Adobe Identity Management System (IMS). |
Bibliotecas de desenvolvimento | Entrada Experience Platform, JupyterLab O fornece bibliotecas pré-instaladas para Python, R e PySpark. Consulte a apêndice para obter uma lista completa de bibliotecas compatíveis. |
Controlador de biblioteca | Quando as bibliotecas pré-instaladas estiverem ausentes para suas necessidades, bibliotecas adicionais poderão ser instaladas para Python e R e são armazenadas temporariamente em contêineres isolados para manter a integridade do Platform e mantenha seus dados seguros. Consulte a kernels para obter mais detalhes. |
Bibliotecas adicionais só estão disponíveis para a sessão em que foram instaladas. Você deve reinstalar todas as bibliotecas adicionais necessárias ao iniciar novas sessões.
A normalização e a interoperabilidade são conceitos fundamentais Experience Platform. A integração do JupyterLab em Platform como um IDE incorporado permite interagir com outros Platform serviços, permitindo utilizar Platform potencial. As seguintes Platform Os serviços do estão disponíveis em JupyterLab:
Alguns Platform integrações de serviço ativadas JupyterLab são limitados a kernels específicos. Consulte a seção sobre kernels para obter mais detalhes.
Informações sobre os principais recursos do JupyterLab As instruções sobre a execução de operações comuns são fornecidas nas seções abaixo:
Entrada Adobe Experience Platform, selecione Notebooks na coluna de navegação à esquerda. Permita algum tempo para JupyterLab para inicializar totalmente.
A variável JupyterLab A interface do consiste em uma barra de menus, uma barra lateral esquerda que pode ser recolhida e a área de trabalho principal que contém guias de documentos e atividades.
Barra de menus
A barra de menus na parte superior da interface tem menus de nível superior que expõem as ações disponíveis no JupyterLab com os atalhos de teclado:
Barra lateral esquerda
A barra lateral esquerda contém guias clicáveis que fornecem acesso aos seguintes recursos:
Selecione uma guia para expor seus recursos ou selecione em uma guia expandida para recolher a barra lateral esquerda, conforme demonstrado abaixo:
Área de trabalho principal
A principal área de trabalho em JupyterLab permite que você organize documentos e outras atividades em painéis de guias que podem ser redimensionadas ou subdivididas. Arraste uma guia até o centro de um painel de guias para migrá-la. Divida um painel arrastando uma guia para a esquerda, direita, parte superior ou parte inferior do painel:
Entrada JupyterLab selecione o ícone de engrenagem no canto superior direito para abrir Configuração do servidor Notebook. Você pode ativar a GPU e alocar a quantidade de memória necessária usando o controle deslizante. A quantidade de memória que você pode alocar depende do quanto sua organização provisionou. Selecionar Atualizar configurações para salvar.
Apenas uma GPU é provisionada por organização para notebooks. Se a GPU estiver em uso, aguarde o usuário que a reservou para liberá-la. Isso pode ser feito fazendo logout ou deixando a GPU em estado ocioso por quatro horas ou mais.
Entrada JupyterLab, você pode encerrar sua sessão para impedir que mais recursos sejam usados. Comece selecionando o ícone de energia e selecione Desligar do popover que parece encerrar a sessão. As sessões de notebook são encerradas automaticamente após 12 horas sem atividade.
Para reiniciar JupyterLab, selecione o ícone de reinicialização localizado diretamente à esquerda do ícone de energia e, em seguida, selecione Restart do popover exibido.
As células de código são o conteúdo principal dos notebooks. Eles contêm código-fonte na linguagem do kernel associado do notebook e a saída como resultado da execução da célula de código. Uma contagem de execução é exibida à direita de cada célula de código que representa sua ordem de execução.
As ações comuns das células são descritas abaixo:
Adicionar uma célula: Clique no sinal de mais (+) no menu do bloco de notas para adicionar uma célula vazia. As novas células são colocadas sob a célula com a qual está ocorrendo a interação no momento, ou no final do bloco de anotações se nenhuma célula em particular estiver em foco.
Mover uma célula: Coloque o cursor à direita da célula que deseja mover, clique e arraste a célula para um novo local. Além disso, mover uma célula de um notebook para outro replica a célula junto com seu conteúdo.
Executar uma célula: Clique no corpo da célula que deseja executar e clique no play ícone () no menu do notebook. Um asterisco (*) é exibido no contador de execução da célula quando o kernel está processando a execução e é substituído por um número inteiro após a conclusão.
Excluir uma célula: Clique no corpo da célula que deseja excluir e clique no link tesoura ícone.
Os kernels notebooks são os mecanismos de computação específicos da linguagem para o processamento de células de notebook. Além de Python, JupyterLab O oferece suporte adicional a idiomas no R, PySpark e Spark (Scala). Quando você abre um documento de notebook, o kernel associado é iniciado. Quando uma célula de notebook é executada, o kernel executa o cálculo e produz resultados que podem consumir recursos significativos da CPU e da memória. Observe que a memória alocada não é liberada até que o kernel seja desligado.
Certos recursos e funcionalidades são limitados a kernels específicos, conforme descrito na tabela abaixo:
Kernel | Suporte à instalação da biblioteca | Platform integrações |
---|---|---|
Python | Sim |
|
R | Sim |
|
Scala | Não |
|
Cada bloco de anotações ou atividade ativa em JupyterLab O utiliza uma sessão do kernel. Todas as sessões ativas podem ser encontradas expandindo o Terminais e kernels circulantes na barra lateral esquerda. O tipo e o estado do kernel de um notebook podem ser identificados observando-se o canto superior direito da interface do notebook. No diagrama abaixo, o kernel associado do notebook é Python3 e o seu estado atual é representado por um círculo cinza à direita. Um círculo oco implica um kernel ocioso e um círculo sólido implica um kernel ocupado.
Se o kernel for desligado ou ficar inativo por um período prolongado, Sem Kernel! com um círculo sólido é exibido. Ative um kernel clicando no status do kernel e selecionando o tipo de kernel apropriado como demonstrado abaixo:
O personalizado Iniciador O fornece modelos de bloco de anotações úteis para que os kernels suportados o ajudem a iniciar sua tarefa, incluindo:
Modelo | Descrição |
---|---|
Em branco | Um arquivo de bloco de anotações vazio. |
Início | Um notebook pré-preenchido demonstrando a exploração de dados usando amostras de dados. |
Vendas de varejo | Um notebook pré-preenchido com o receita de vendas de varejo usando dados de amostra. |
Construtor de fórmula | Um modelo de bloco de anotações para criar uma fórmula no JupyterLab. Ele é pré-preenchido com código e comentários que demonstram e descrevem o processo de criação da fórmula. Consulte a tutorial do bloco de anotações para a receita para obter uma apresentação detalhada. |
Query Service | Um bloco de anotações pré-preenchido que demonstre a utilização de Query Service diretamente no JupyterLab com fluxos de trabalho de amostra fornecidos que analisam dados em escala. |
Eventos XDM | Um bloco de anotações pré-preenchido que demonstra a exploração de dados em dados de Evento de experiência pós-valor, com foco nos recursos comuns na estrutura de dados. |
Consultas XDM | Um notebook preenchido previamente demonstrando exemplos de consultas comerciais sobre dados de evento de experiência. |
Agregação | Um notebook pré-preenchido demonstrando fluxos de trabalho de amostra para agregar grandes quantidades de dados em blocos menores e gerenciáveis. |
Geração de cluster | Um notebook pré-preenchido demonstrando o processo completo de modelagem de aprendizado de máquina usando algoritmos de cluster. |
Alguns modelos de notebook estão limitados a determinados kernels. A disponibilidade de modelo para cada kernel é mapeada na seguinte tabela:
Em branco | Início | Vendas de varejo | Construtor de fórmula | Query Service | Eventos XDM | Consultas XDM | Agregação | Geração de cluster | |
---|---|---|---|---|---|---|---|---|---|
Python | sim | sim | sim | sim | sim | sim | não | não | não |
R | sim | sim | sim | não | não | não | não | não | não |
PySpark 3 (Spark 2.4) | não | sim | não | não | não | não | sim | sim | não |
Scala | sim | sim | não | não | não | não | não | não | sim |
Para abrir um novo Iniciador, clique em Arquivo > Novo inicializador. Como alternativa, expanda a variável Navegador de arquivos na barra lateral esquerda e clique no sinal de mais (+):
Para saber mais sobre cada um dos notebooks suportados e como usá-los, visite o Acesso aos dados dos notebooks Jupyterlab guia do desenvolvedor. Este guia tem como foco o uso de notebooks JupyterLab para acessar seus dados, incluindo leitura, gravação e consulta de dados. O guia de acesso a dados também contém informações sobre a quantidade máxima de dados que podem ser lidos por cada notebook suportado.
Para obter uma lista de pacotes compatíveis com o Python, R e PySpark, copie e cole !conda list
em uma nova célula, em seguida, execute a célula. Uma lista de pacotes suportados é preenchida em ordem alfabética.
Além disso, as seguintes dependências são usadas, mas não listadas: