MLServices端点

上次更新: 2023-05-25
  • 创建对象:
  • Developer
    User
    Admin
    Leader

MLService是一个已发布的经过训练的模型,使您的组织能够访问和重用之前开发的模型。 MLServices的一个主要功能是按计划自动执行训练和评分。 计划的训练运行有助于保持模型的效率和准确性,而计划的评分运行可确保始终如一地生成新见解。

自动训练和评分计划通过开始时间戳、结束时间戳和频率来定义,频率表示为 cron表达式. 可以在以下情况下定义计划 创建MLService 或应用者 更新现有MLService.

创建MLService

您可以通过执行POST请求和提供服务的名称和有效MLInstance ID的有效负载来创建MLService。 用于创建MLService的MLInstance不需要具有现有的训练实验,但您可以通过提供相应的实验ID和训练运行ID,选择使用现有的训练模型创建MLService。

API格式

POST /mlServices

请求

curl -X POST \
    https://platform.adobe.io/data/sensei/mlServices \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
    -d '{
        "name": "A name for this MLService",
        "description": "A description for this MLService",
        "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
        "trainingDataSetId": "5ee3cd7f2d34011913c56941",
        "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
        "trainingExperimentRunId": "33408593-2871-4198-a812-6d1b7d939cda",
        "trainingSchedule": {
            "startTime": "2019-01-01T00:00",
            "endTime": "2019-12-31T00:00",
            "cron": "20 * * * *"
        },
        "scoringSchedule": {
            "startTime": "2019-01-01T00:00",
            "endTime": "2019-12-31T00:00",
            "cron": "20 * * * *"
        }
    }'
属性 描述
name 所需的MLService名称。 与此MLService对应的服务将继承此值,作为服务的名称显示在服务库UI中。
description MLService的可选描述。 与此MLService对应的服务将继承此值,以作为服务的描述显示在服务库UI中。
mlInstanceId 有效的MLInstance ID。
trainingDataSetId 如果提供,训练数据集ID将覆盖MLInstance的默认数据集ID。 如果用于创建MLService的MLInstance未定义训练数据集,则必须提供相应的训练数据集ID。
trainingExperimentId 您可以选择提供的试验ID。 如果未提供此值,则创建MLService也将使用MLInstance的默认配置创建一个新的试验。
trainingExperimentRunId 您可以选择提供的训练运行ID。 如果未提供此值,则创建MLService也将使用MLInstance的默认训练参数创建和执行训练运行。
trainingSchedule 自动训练运行的时间表。 如果定义了此属性,则MLService将自动按计划执行训练运行。
trainingSchedule.startTime 计划培训运行开始的时间戳。
trainingSchedule.endTime 计划培训运行将结束的时间戳。
trainingSchedule.cron 定义自动训练运行频率的cron表达式。
scoringSchedule 自动评分运行的时间表。 如果定义了此属性,则MLService将自动按计划执行评分运行。
scoringSchedule.startTime 计划评分运行开始的时间戳。
scoringSchedule.endTime 计划评分运行结束的时间戳。
scoringSchedule.cron 定义自动评分运行频率的cron表达式。

响应

成功响应将返回一个有效负载,其中包含新创建的MLService的详细信息,包括其唯一标识符(id),用于训练的试验ID (trainingExperimentId),用于评分的试验ID (scoringExperimentId),并且输入训练数据集ID (trainingDataSetId)。

{
    "id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
    "name": "A name for this MLService",
    "description": "A description for this MLService",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
    "trainingDataSetId": "5ee3cd7f2d34011913c56941",
    "scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "trainingSchedule": {
        "startTime": "2019-01-01T00:00",
        "endTime": "2019-12-31T00:00",
        "cron": "20 * * * *"
    },
    "scoringSchedule": {
        "startTime": "2019-01-01T00:00",
        "endTime": "2019-12-31T00:00",
        "cron": "20 * * * *"
    },
    "updated": "2019-01-01T00:00:00.000Z"
}

检索MLServices列表

您可以通过执行单个GET请求来检索MLServices列表。 要帮助筛选结果,您可以在请求路径中指定查询参数。 有关可用查询的列表,请参阅 用于资源检索的查询参数.

API格式

GET /mlServices
GET /mlServices?{QUERY_PARAMETER}={VALUE}
GET /mlServices?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
参数 描述
{QUERY_PARAMETER} 其中一项 可用的查询参数 用于筛选结果。
{VALUE} 上一个查询参数的值。

请求

以下请求包含一个查询,并检索共享同一MLInstance ID的MLServices列表({MLINSTANCE_ID})。

curl -X GET \
    'https://platform.adobe.io/data/sensei/mlServices?property=mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda' \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

响应

成功响应将返回MLServices的列表及其详细信息,包括其MLService ID ({MLSERVICE_ID}),用于训练的试验ID ({TRAINING_ID}),用于评分的试验ID ({SCORING_ID}),并且输入训练数据集ID ({DATASET_ID})。

{
    "children": [
        {
            "id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
            "name": "A service created in UI",
            "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
            "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
            "trainingDataSetId": "5ee3cd7f2d34011913c56941",
            "scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "displayName": "Jane Doe",
                "userId": "Jane_Doe@AdobeID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        }
    ],
    "_page": {
        "property": "mlInstanceId==46986c8f-7739-4376-8509-0178bdf32cda,deleted==false",
        "count": 1
    }
}

检索特定MLService

您可以通过执行GET请求(请求路径中包含所需的MLService ID)来检索特定试验的详细信息。

API格式

GET /mlServices/{MLSERVICE_ID}
  • {MLSERVICE_ID}:有效的MLService ID。

请求

curl -X GET \
    https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

响应

成功的响应将返回包含所请求MLService的详细信息的有效负载。

{
    "id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
    "name": "A name for this MLService",
    "description": "A description for this MLService",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
    "trainingDataSetId": "5ee3cd7f2d34011913c56941",
    "scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z"
}

更新MLService

您可以更新现有MLService,方法是通过PUT请求(请求路径中包含目标MLService的ID)覆盖其属性,并提供包含已更新属性的JSON有效负载。

小贴士

为了确保此PUT请求成功,建议您首先执行GET请求 按ID检索MLService. 然后,修改并更新返回的JSON对象,并将修改后的JSON对象的整个内容应用为PUT请求的有效负载。

API格式

PUT /mlServices/{MLSERVICE_ID}
  • {MLSERVICE_ID}:有效的MLService ID。

请求

curl -X PUT \
    https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json; profile=mlService.v1.json' \
    -d '{
        "name": "A name for this MLService",
        "description": "A description for this MLService",
        "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
        "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
        "trainingDataSetId": "5ee3cd7f2d34011913c56941",
        "scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
        "trainingSchedule": {
            "startTime": "2019-01-01T00:00",
            "endTime": "2019-12-31T00:00",
            "cron": "20 * * * *"
        },
        "scoringSchedule": {
            "startTime": "2019-01-01T00:00",
            "endTime": "2019-12-31T00:00",
            "cron": "20 * * * *"
        }
    }'

响应

成功的响应将返回包含MLService更新详细信息的有效负载。

{
    "id": "68d936d8-17e6-44ef-a4b6-c7502055638b",
    "name": "A name for this MLService",
    "description": "A description for this MLService",
    "mlInstanceId": "46986c8f-7739-4376-8509-0178bdf32cda",
    "trainingExperimentId": "014d8acf-08fb-421c-8b65-760c8799c627",
    "trainingDataSetId": "5ee3cd7f2d34011913c56941",
    "scoringExperimentId": "76c2b1b-fad7-4b31-8c54-19ecc18b1ea0",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "trainingSchedule": {
        "startTime": "2019-01-01T00:00",
        "endTime": "2019-12-31T00:00",
        "cron": "20 * * * *"
    },
    "scoringSchedule": {
        "startTime": "2019-01-01T00:00",
        "endTime": "2019-12-31T00:00",
        "cron": "20 * * * *"
    },
    "updated": "2019-01-02T00:00:00.000Z"
}

删除MLService

通过执行DELETE请求(请求路径中包含目标MLService的ID),可以删除单个MLService。

API格式

DELETE /mlServices/{MLSERVICE_ID}
参数 描述
{MLSERVICE_ID} 有效的MLService ID。

请求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/mlServices/68d936d8-17e6-44ef-a4b6-c7502055638b \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

响应

{
    "title": "Success",
    "status": 200,
    "detail": "MLService deletion was successful"
}

按MLInstance ID删除MLServices

通过执行将MLInstance ID指定为查询参数的DELETE请求,可以删除属于特定MLInstance的所有MLServices。

API格式

DELETE /mlServices?mlInstanceId={MLINSTANCE_ID}
参数 描述
{MLINSTANCE_ID} 有效的MLInstance ID。

请求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/mlServices?mlInstanceId=46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {ORG_ID}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

响应

{
    "title": "Success",
    "status": 200,
    "detail": "MLServices deletion was successful"
}

在此页面上