MLInstances端點

MLInstance是現有引擎與定義任何訓練參數、計分參數或硬體資源配置的一組適當配置的配對。

建立MLInstance

您可以在提供由有效引擎ID({ENGINE_ID})和一組適當預設組態組成的請求裝載時,執行POST請求來建立MLInstance。

如果引擎ID參照PySpark或Spark引擎,則您可以設定計算資源量,例如內核數或記憶體量。 如果參考了Python引擎,則您可以選擇使用CPU或GPU進行訓練和計分。 如需詳細資訊,請參閱PySpark和Spark資源組態Python CPU和GPU組態的附錄部分。

API格式

POST /mlInstances

請求

curl -X POST \
    https://platform.adobe.io/data/sensei/mlInstances \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
    -d '{
        "name": "A name for this MLInstance",
        "description": "A description for this MLInstance",
        "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
        "tasks": [
            {
                "name": "train",
                "parameters": [
                    {
                        "key": "training parameter",
                        "value": "parameter value"
                    }
                ]
            },
            {
                "name": "score",
                "parameters": [
                    {
                        "key": "scoring parameter",
                        "value": "parameter value"
                    }
                ]
            },
            {
                "name": "fp",
                "parameters": [
                    {
                        "key": "feature pipeline parameter",
                        "value": "parameter value"
                    }
                ]
            }
        ],
    }'
屬性 說明
name MLInstance的所需名稱。 與此MLInstance對應的模型將繼承此值,以作為模型的名稱顯示在UI中。
description MLInstance的選用說明。 與此MLInstance對應的模型將繼承此值,以便在UI中顯示為模型的說明。 此為必要屬性。如果您不想提供說明,請將其值設為空字串。
engineId 現有引擎的ID。
tasks 訓練、計分或功能管道的一組配置。

回應

成功的回應會傳回包含新建立之MLInstance之詳細資料(包括其唯一識別碼)的裝載。id

{
    "id": "46986c8f-7739-4376-8509-0178bdf32cda",
    "name": "A name for this MLInstance",
    "description": "A description for this MLInstance",
    "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "tasks": [
        {
            "name": "train",
            "parameters": [
                {
                    "key": "training parameter",
                    "value": "parameter value"
                }
            ]
        },
        {
            "name": "score",
            "parameters": [
                {
                    "key": "scoring parameter",
                    "value": "parameter value"
                }
            ]
        },
        {
            "name": "fp",
            "parameters": [
                {
                    "key": "feature pipeline parameter",
                    "value": "parameter value"
                }
            ]
        }
    ]
}

檢索MLInstances清單

您可以執行單一GET請求來擷取MLInstances清單。 若要協助篩選結果,您可以在請求路徑中指定查詢參數。 有關可用查詢的清單,請參閱資產檢索查詢參數的附錄部分。

API格式

GET /mlInstances
GET /mlInstances?{QUERY_PARAMETER}={VALUE}
GET /mlInstances?{QUERY_PARAMETER_1}={VALUE_1}&{QUERY_PARAMETER_2}={VALUE_2}
參數 說明
{QUERY_PARAMETER} 用於篩選結果的可用查詢參數之一。
{VALUE} 前面查詢參數的值。

請求

curl -X GET \
    https://platform.adobe.io/data/sensei/mlInstances \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

成功的回應會傳回MLInstances的清單及其詳細資訊。

{
    "children": [
        {
            "id": "46986c8f-7739-4376-8509-0178bdf32cda",
            "name": "A name for this MLInstance",
            "description": "A description for this MLInstance",
            "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "displayName": "Jane Doe",
                "userId": "Jane_Doe@AdobeID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        },
        {
            "id": "56986c8f-7739-4376-8509-0178bdf32cda",
            "name": "Retail Sales Model",
            "description": "A Model created with the Retail Sales Recipe",
            "engineId": "32f4166f-85ba-4130-a995-a2b8e1edde32",
            "created": "2019-01-01T00:00:00.000Z",
            "createdBy": {
                "displayName": "Jane Doe",
                "userId": "Jane_Doe@AdobeID"
            },
            "updated": "2019-01-01T00:00:00.000Z"
        }
    ],
    "_page": {
        "property": "deleted==false",
        "totalCount": 2,
        "count": 2
    }
}

檢索特定MLInstance

您可以執行GET請求,在請求路徑中包含所需MLInstance的ID,以擷取特定MLInstance的詳細資訊。

API格式

GET /mlInstances/{MLINSTANCE_ID}
參數 說明
{MLINSTANCE_ID} 所要MLInstance的ID。

請求

curl -X GET \
    https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

成功的回應會傳回MLInstance的詳細資訊。

{
    "id": "46986c8f-7739-4376-8509-0178bdf32cda",
    "name": "A name for this MLInstance",
    "description": "A description for this MLInstance",
    "engineId": "22f4166f-85ba-4130-a995-a2b8e1edde32",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "displayName": "Jane Doe",
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-01T00:00:00.000Z",
    "tasks": [
        {
            "name": "train",
            "parameters": [
                {
                    "key": "training parameter",
                    "value": "parameter value"
                }
            ]
        },
        {
            "name": "score",
            "parameters": [
                {
                    "key": "scoring parameter",
                    "value": "parameter value"
                }
            ]
        },
        {
            "name": "featurePipeline",
            "parameters": [
                {
                    "key": "feature pipeline parameter",
                    "value": "parameter value"
                }
            ]
        }
    ]
}

更新MLInstance

您可以透過PUT請求覆寫現有MLInstance的屬性,以更新其屬性,該PUT請求在請求路徑中包含目標MLInstance的ID,並提供包含更新屬性的JSON裝載。

秘訣

為確保此PUT請求成功,建議您首先執行GET請求以檢索MLInstance by ID。 然後,修改並更新傳回的JSON物件,並套用已修改的JSON物件的完整內容作為PUT要求的裝載。

下列範例API呼叫會在初步擁有這些屬性的同時,更新MLInstance的訓練和計分參數:

{
    "name": "A name for this MLInstance",
    "description": "A description for this MLInstance",
    "engineId": "00000000-0000-0000-0000-000000000000",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "displayName": "Jane Doe",
        "userId": "Jane_Doe@AdobeID"
    },
    "tasks": [
        {
            "name": "train",
            "parameters": [
                {
                    "key": "learning_rate",
                    "value": "0.3"
                }
            ]
        },
        {
            "name": "score",
            "parameters": [
                {
                    "key": "output_dataset_id",
                    "value": "output-dataset-000"
                }
            ]
        }
    ]
}

API格式

PUT /mlInstances/{MLINSTANCE_ID}
參數 說明
{MLINSTANCE_ID} 有效的MLInstance ID。

請求

curl -X PUT \
    https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}' \
    -H 'content-type: application/vnd.adobe.platform.sensei+json;profile=mlInstance.v1.json' \
    -d '{
        "name": "A name for this MLInstance",
        "description": "A description for this MLInstance",
        "engineId": "00000000-0000-0000-0000-000000000000",
        "created": "2019-01-01T00:00:00.000Z",
        "createdBy": {
            "displayName": "Jane Doe",
            "userId": "Jane_Doe@AdobeID"
        },
        "tasks": [
            {
                "name": "train",
                "parameters": [
                    {
                        "key": "learning_rate",
                        "value": "0.5"
                    }
                ]
            },
            {
                "name": "score",
                "parameters": [
                    {
                        "key": "output_dataset_id",
                        "value": "output-dataset-001"
                    }
                ]
            }
        ]
    }'

回應

成功的回應會傳回包含MLInstance更新詳細資料的裝載。

{
    "id": "46986c8f-7739-4376-8509-0178bdf32cda",
    "name": "A name for this MLInstance",
    "description": "A description for this MLInstance",
    "engineId": "00000000-0000-0000-0000-000000000000",
    "created": "2019-01-01T00:00:00.000Z",
    "createdBy": {
        "displayName": "Jane Doe",
        "userId": "Jane_Doe@AdobeID"
    },
    "updated": "2019-01-02T00:00:00.000Z",
    "tasks": [
        {
            "name": "train",
            "parameters": [
                {
                    "key": "learning_rate",
                    "value": "0.5"
                }
            ]
        },
        {
            "name": "score",
            "parameters": [
                {
                    "key": "output_dataset_id",
                    "value": "output-data-set-001"
                }
            ]
        }
    ]
}

依引擎ID刪除MLInstances

您可以執行DELETE請求,將引擎ID作為查詢參數,刪除共用相同引擎的所有MLInstances。

API格式

DELETE /mlInstances?engineId={ENGINE_ID}
參數 說明
{ENGINE_ID} 有效的引擎ID。

請求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/mlInstances?engineId=22f4166f-85ba-4130-a995-a2b8e1edde32 \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

{
    "title": "Success",
    "status": 200,
    "detail": "MLInstances successfully deleted"
}

刪除MLInstance

您可以執行DELETE請求,將目標MLInstance的ID包含在請求路徑中,以刪除單一MLInstance。

API格式

DELETE /mlInstances/{MLINSTANCE_ID}
參數 說明
{MLINSTANCE_ID} 有效的MLInstance ID。

請求

curl -X DELETE \
    https://platform.adobe.io/data/sensei/mlInstances/46986c8f-7739-4376-8509-0178bdf32cda \
    -H 'Authorization: Bearer {ACCESS_TOKEN}' \
    -H 'x-api-key: {API_KEY}' \
    -H 'x-gw-ims-org-id: {IMS_ORG}' \
    -H 'x-sandbox-name: {SANDBOX_NAME}'

回應

{
    "title": "Success",
    "status": 200,
    "detail": "MLInstance deletion was successful"
}

本頁內容