Blueprint per personalizzazione Data Science per l’arricchimento del profilo

Il blueprint per la personalizzazione basata su Data Science per l’arricchimento del profilo illustra come è possibile utilizzare i dati in Adobe Experience Platform per addestrare, implementare e valutare modelli al fine di fornire informazioni basate sull’apprendimento automatico in Experience Platform e Real-time Customer Data Platform, mediante strumenti di data science e machine learning. Le informazioni modellate possono essere acquisite in Experience Platform per arricchire il profilo cliente in tempo reale. Esempi di informazioni basate sull’apprendimento automatico includono valutazione del ciclo di vita, affinità per prodotto e categoria, propensione alla conversione o all’abbandono.

Casi di utilizzo

  • Estrarre informazioni approfondite e individuare eventuali pattern dai dati dei clienti, quindi addestrare e valutare i modelli utilizzando questi dati.
  • Arricchire Real-time Customer Profile con elementi di conoscenza e attributi basati su modelli, per una personalizzazione più granulare e una migliore ottimizzazione del percorso
  • Addestrare e valutare i modelli per determinare informazioni sui clienti, come valore del ciclo di vita del cliente, propensione alla conversione o all’abbandono, affinità per prodotti e contenuti e valutazione del coinvolgimento

Architettura

Architettura di riferimento per il blueprint per la personalizzazione Data Science per l’arricchimento del profilo

Fasi di implementazione

  1. Creare schemi per i dati da acquisire.
  2. Creare set di dati per i dati da acquisire.
  3. Inserire i dati in Experience Platform.

Per i risultati del modello da acquisire nel profilo cliente in tempo reale, assicurati di effettuare le seguenti operazioni prima di acquisire i dati:

  1. Configurare correttamente le identità e i relativi spazi dei nomi nello schema, affinché i dati acquisiti possano essere uniti in un profilo unificato.
  2. Attivare lo schema e i set di dati per il profilo.

Considerazioni sull’implementazione

  • Nella maggior parte dei casi i risultati del modello devono essere acquisiti come attributi di profilo, e non come eventi di esperienza. I risultati del modello possono essere una semplice stringa di attributo. Se devi acquisire più risultati del modello, è preferibile utilizzare un campo di tipo mappa o array.
  • Il set di dati dello snapshot di profilo giornaliero (esportazione giornaliera dei dati degli attributi del profilo unificato) può essere utilizzato per addestrare i modelli sui dati degli attributi di profilo. La documentazione sui set di dati dello snapshot del profilo è disponibile qui.
  • Per estrarre i dati da Experience Platform, è possibile utilizzare i seguenti metodi.
    • Data Access SDK
      • I dati sono in formato non elaborato.
      • I dati di eventi esperienza di profilo restano nello stato non elaborato e non unificato.
    • Destinazioni RTCDP
      • In dati in uscita possono includere solo attributi di profilo e appartenenze ai segmenti.
    • Query Service
      • L’accesso a grandi quantità di dati non elaborati potrebbe causare il timeout delle query dopo 10 minuti. Si consiglia di eseguire query dei dati in modo incrementale.

Documentazione correlata

Articoli di blog correlati

In questa pagina