Erhalten Sie Live-Eigenschaftenempfehlungen beim Erstellen Ihrer Segmente, ausgehend von Ihren eigenen Erstanbietereigenschaften und Audience Marketplace-Daten-Feeds.
Sehen Sie sich zunächst das Video Trait Recommendations unten an und lesen Sie dann weitere Informationen. Die Videodemonstration zeigt Ihnen, wie Sie mit Empfehlungen aus Ihren eigenen Erstanbietereigenschaften sowie mit Eigenschaftsempfehlungen aus Audience Marketplace -Daten-Feeds arbeiten können, die Sie bereits für abonniert haben.
Im nächsten Video wird der Arbeitsablauf für Marketplace Recommendations beschrieben, in dem Sie anhand von Empfehlungen aus Daten-Feeds in Audience Marketplace zeigen, wie Sie Ihren Segmenten Eigenschaften hinzufügen können. Diese Empfehlungen basieren auf Daten-Feeds, die Sie nicht für abonniert haben.
Trait Recommendations, gestützt auf Adobe Sensei, bringt die Datenwissenschaft in Ihre alltäglichen Audience Manager-Workflows.
Bei Trait Recommendations erhalten Sie beim Erstellen oder Bearbeiten eines Segments in Segment Builder Empfehlungen zu zusätzlichen Eigenschaften, die Sie einbeziehen können, die den Eigenschaften in der Segmentregel ähnlich sind.
In Audience Manager werden Eigenschaftsempfehlungen sowohl aus Ihren Erstanbietereigenschaften im Abschnitt Recommendations als auch aus Audience Marketplace im Abschnitt Recommendations from Marketplace angezeigt.
Fügen Sie die empfohlenen Merkmale zu Ihrem Segment hinzu, um Ihre Zielgruppe zu erweitern.
Kurz gesagt:
Mit Trait Recommendations können Sie Ihre Workflows je nach Verwendung von Audience Manager verbessern:
Algorithmic Models findet nicht nur die einflussreichsten Eigenschaften, sondern bewertet auch Benutzer anhand dieser Eigenschaften und weist jedem Benutzer ein individuelles Ergebnis zu. Anschließend erstellen Sie algorithmische Eigenschaften, um Ihre Benutzer anzusprechen. Mit den Genauigkeits- und Reichweitenkontrollen im Trait Builder können Sie festlegen, welche Benutzer unter all jenen mit den einflussreichen Eigenschaften Sie als Ziel auswählen möchten.
Algorithmic Models ermöglicht es Ihnen, Benutzer mit unterschiedlichen Genauigkeitsstufen auszuwählen und zu testen, in Audience Lab welcher Benutzergruppe die Konvertierung besser ist. Weitere Informationen finden Sie im detaillierten Anwendungsfall unter Vergleichen von Modellen in Audience Lab.
In Algorithmic Models wird das Modell alle 8 Tage ausgeführt und aktualisiert die für algorithmische Eigenschaften qualifizierten Benutzer.
Trait Recommendations ist eine schnelle Möglichkeit, Einblicke in andere Eigenschaften zu erhalten, die den Eigenschaften ähneln, die Sie in einem Segment verwenden.
Sie sollten Trait Recommendations verwenden, wenn:
Beim Erstellen oder Bearbeiten eines Segments in Segment Builder können Sie Eigenschaften analysieren, die den Eigenschaften in der Segmentregel ähneln. Der Workflow Segment Builder ähnelt sehr dem für neue und vorhandene Segmente:
Gehen Sie zu Zielgruppendaten > Segmente und klicken Sie auf Neu hinzufügen.
Fügen Sie der Segmentregel im Dropdown-Feld Eigenschaften mindestens eine Eigenschaft hinzu.
Sie können die von Erstanbietern empfohlenen Eigenschaften und die Audience Marketplace-Eigenschaftenempfehlungen aus Feeds sehen, die Sie abonniert haben, im Abschnitt Recommendations . Im Abschnitt Recommendations from Marketplace werden Eigenschaftsempfehlungen aus Feeds angezeigt, die Sie nicht abonniert haben. Alle diese Empfehlungen ähneln den Eigenschaften, die Sie der Segmentregel hinzugefügt haben. Scrollen Sie nach unten, um alle empfohlenen Eigenschaften anzuzeigen.
(Optional) Um empfohlene Erstanbietereigenschaften aus bestimmten Datenquellen auszuschließen, klicken Sie auf das Symbol X für die Datenquellen, die Sie ausschließen möchten.
Die ausgeschlossenen Datenquellen werden direkt über der Liste der empfohlenen Eigenschaften angezeigt. Klicken Sie im grauen Feld auf X, um die Ausschlüsse zu entfernen und die Ergebnisse aus den entsprechenden Datenquellen erneut anzuzeigen.
Beim Hinzufügen von Marketplace-Eigenschaften zu einem Segment werden die Eigenschaften nur für die Segmentschätzung verwendet, bis Sie den entsprechenden Daten-Feed abonnieren. Eigenschaften, die aus Daten-Feeds stammen, die Sie nicht abonniert haben, werden in der Eigenschaftsliste mit einem Warenkorbsymbol markiert. Klicken Sie auf den Eigenschaftsnamen, um zur Daten-Feed-Seite zu gelangen und sie zu abonnieren.
Sie können ein Segment mit Eigenschaften von Drittanbietern erst speichern, nachdem Sie sich bei den entsprechenden Daten-Feeds angemeldet haben.
Gehen Sie zu Audience Data>Segments, wählen Sie das Segment aus, das Sie bearbeiten möchten, und klicken Sie auf .
Scrollen Sie nach unten zum Dropdown-Feld Traits.
Sie können empfohlene Eigenschaften sehen, die den Eigenschaften ähneln, die bereits in der Segmentregel enthalten sind. Scrollen Sie nach unten, um alle empfohlenen Eigenschaften anzuzeigen.
(Optional) Um empfohlene Eigenschaften aus bestimmten Datenquellen auszuschließen, klicken Sie auf das Symbol X für die Datenquellen, die Sie ausschließen möchten.
Die ausgeschlossenen Datenquellen werden direkt über der Liste der empfohlenen Eigenschaften angezeigt. Klicken Sie im grauen Feld auf X, um die Ausschlüsse zu entfernen und die Ergebnisse aus den entsprechenden Datenquellen erneut anzuzeigen.
Wenn Sie ein Segment erstellen oder bearbeiten und der Segmentregel eine Eigenschaft hinzufügen, werden Ihnen maximal fünfzig empfohlene Eigenschaften angezeigt, die der von Ihnen hinzugefügten ähneln. Wenn die Segmentregel mehr als eine Eigenschaft enthält, verwendet Audience Manager eine Round-Robin-Methode, um die beste Übereinstimmung für jede Eigenschaft anzuzeigen, dann die zweitbeste Übereinstimmung für jede Eigenschaft usw. für die fünfzig größten Eigenschaften nach Population in der Segmentregel.
Wenn die Segmentregel beispielsweise drei Eigenschaften enthält, wie unten dargestellt, werden folgende Eigenschaften empfohlen:
Um Empfehlungen für eine bestimmte Eigenschaft abzurufen, können Sie auf die Eigenschaften in der Segmentregel (1) oder in der empfohlenen Eigenschaftenansicht (2) klicken.
Wenn Sie auf eine Erstanbietereigenschaft klicken, wird ein Popup-Fenster geöffnet, wie in der Abbildung unten dargestellt. Wenn die empfohlenen Eigenschaften nicht Teil des Segments sind, können Sie sie dem Segment hinzufügen, indem Sie + drücken.
Die ausgeschlossenen Datenquellen aus der Hauptseite werden beim Generieren von Empfehlungen im Popup-Fenster mit Eigenschafteninformationen berücksichtigt. Wenn Sie Datenquellen in dieser Ansicht ausschließen, gelten die Ausschlüsse auch für die Hauptseite.
Empfohlene Eigenschaften können Ihre Erstanbietereigenschaften oder Eigenschaften von Drittanbietern aus Daten-Feeds sein, die Sie in Audience Marketplace abonniert haben.
Um Eigenschaftsempfehlungen zu erstellen, berechnet Audience Manager die Jaccard-Ähnlichkeit zwischen der Zieleigenschaft und allen anderen Eigenschaften, auf die Ihr Konto Zugriff hat, einschließlich Drittanbieterdaten. Audience Manager zeigt dann bis zu fünfzig Eigenschaften an, die die höchste Ähnlichkeit aufweisen.
Audience Manager berechnen das Trait Similarity Score zwischen zwei Eigenschaften, indem sie die Schnittmenge und Vereinigung anhand der Anzahl der UUIDs berechnen und dann die beiden teilen. Für zwei Eigenschaften A und B sieht die Berechnung wie folgt aus:
Siehe auch die beiden folgenden Beispiele.
Bei zwei Eigenschaften A und B, nehmen wir an, dass jede Eigenschaft eine Population von 1.000.000 UUIDs hat, von denen 25.000 UUIDs für beide Eigenschaften qualifiziert sind.
Mit der obigen Formel führt dies zu Folgendem: 25.000 / 1.975.000 = 0.012. Dies ist ein niedriger Wert Trait Similarity Score, die beiden Eigenschaften sind sehr unähnlich.
Wenn dieselben Eigenschaften A und B 400.000 UUIDs aufweisen, die für beide Eigenschaften qualifiziert sind, ist Trait Similarity Score viel höher:
400.000 / 1.600.000 = 0,25
Verwenden Sie die nachstehende Tabelle als grobe Anleitung zur Ähnlichkeit von Eigenschaften. Dieses Handbuch basiert auf den Ähnlichkeitswerten, die bei den meisten Eigenschaften beobachtet wurden.
Trait Similarity Score | Signifikanz |
---|---|
0.1 und höher | Hohe Ähnlichkeit zwischen Eigenschaften |
0,03 - 0,1 | Mittlere Ähnlichkeit zwischen Eigenschaften |
0.01 - 0.03 | Geringe Ähnlichkeit zwischen Eigenschaften |
0-0,01 | Sehr geringe Ähnlichkeit zwischen Eigenschaften |
Für Unternehmen, die Role-Based Access Controls (RBAC) verwenden, benötigen Sie die Berechtigung zum Erstellen und Bearbeiten von Segmenten, um die empfohlenen Eigenschaften anzuzeigen. Die Eigenschaftenempfehlungen, die Sie sehen, sind nur diejenigen aus Datenquellen, auf die Sie über RBAC zugreifen können.
Um Marketplace Recommendations zu einem Segment hinzuzufügen, müssen Benutzer zunächst die entsprechenden Daten-Feeds abonnieren. Nur Benutzer mit Administratorrechten können Audience Marketplace-Daten-Feeds abonnieren.
Weitere Informationen zu RBAC Steuerelementen hier.