La scelta del modello di attribuzione corretto per l’organizzazione dipende da una serie di considerazioni. Questo articolo esplora una metodologia e alcune best practice generali.
Questa analisi deve essere eseguita prima di scegliere un modello di attribuzione.
Questa fase consiste inizialmente nel comprendere il comportamento del cliente e definire le metriche di conversione. In base alle metriche di conversione, strumenti come Feed dati (per dati non elaborati) o Analysis Workspace facilitano la comprensione di
Ad esempio, se il 50% dei clienti tocca 3 canali prima della conversione, esiste un’interazione tra questi 3 canali?
Per comprendere meglio la situazione, puoi quindi eseguire un’analisi upper funnel o lower funnel.
I canali di analisi upper funnel vengono utilizzati per creare awareness del brand o del prodotto. Ad esempio, la maggior parte degli annunci TV hanno come obiettivo la brand awareness. Con il passare del tempo, le persone si dimenticheranno del tuo annuncio TV, e potresti quindi usare il modello di attribuzione Time decay (Decadimento temporale).
Nell’analisi lower funnel, il presupposto è che le persone conoscano già il tuo marchio e che desideri che vengano convertite. Utilizza e-mail, notifiche push o annunci Facebook.
Lo scopo di questo passaggio è quello di convalidare le tue ipotesi.
Esempio 1
Supponiamo che l’ipotesi sia: "Il mio canale di primo contatto ha un impatto maggiore sulla conversione rispetto al mio canale di ultimo contatto".
In questo caso, puoi quindi utilizzare Modello di attribuzione "a J inversa" per testare questa ipotesi. Questo modello attribuisce il 60% del credito al primo punto di contatto.
Esempio 2
Supponiamo che l’ipotesi sia: "nel nostro settore (ad esempio, viaggi), la finestra di attribuzione è di 60 o 90 giorni, non di 30 giorni, perché i clienti fanno molta ricerca prima di acquistare un prodotto".
In questo caso, è necessario modificare intervallo di lookback a 90 giorni.
Se non disponi ancora di un modello di attribuzione che fornisca risposte soddisfacenti a tutte le domande, puoi utilizzare attribuzione algoritmica. Poiché è molto difficile convalidare un numero elevato di ipotesi e combinazioni possibili, l’attribuzione algoritmica utilizza algoritmi incorporati per allocare credito tra gli elementi dimensionali.