Optimieren von GraphQL-Abfragen optimizing-graphql-queries

NOTE
Bevor Sie diese Optimierungsempfehlungen anwenden, sollten Sie Aktualisieren Ihrer Inhaltsfragmente für Paging und Sortierung in GraphQL-Filterung für beste Leistung.

Diese Richtlinien helfen Ihnen bei der Vermeidung von Leistungsproblemen bei Ihren GraphQL-Abfragen.

GraphQL-Checkliste graphql-checklist

Die folgende Checkliste soll Ihnen dabei helfen, die Konfiguration und Verwendung von GraphQL in Adobe Experience Manager (AEM) as a Cloud Service zu optimieren.

Erste Grundsätze first-principles

Verwendung von persistierten GraphQL-Abfragen use-persisted-graphql-queries

Empfehlung

Die Verwendung von persistierten GraphQL-Abfragen wird dringend empfohlen.

Persistierte GraphQL-Abfragen helfen durch die Verwendung des Content Delivery Network (CDN) bei der Reduzierung der Abfrageleistung. Client-Anwendungen fordern persistierte Abfragen mit GET-Anforderungen an, um eine schnelle Edge-fähige Ausführung zu ermöglichen.

Weitere Informationen

Siehe:

Installieren des GraphQL Index-Pakets install-graphql-index-package

Empfehlung

Kunden, die GraphQL verwenden must Installieren Sie das Experience Manager-Inhaltsfragment mit dem GraphQL-Indexpaket. Auf diese Weise können Sie die erforderliche Indexdefinition hinzufügen, die auf den tatsächlich verwendeten Funktionen basiert. Wenn dieses Paket nicht installiert wird, kann es zu langsamen oder fehlgeschlagenen GraphQL-Abfragen kommen.

Die für Ihr Service Pack geeignete Version finden Sie in den Versionshinweisen . Das neueste Service Pack finden Sie beispielsweise unter Installieren des GraphQL-Indexpakets für Experience Manager-Inhaltsfragmente .

NOTE
Installieren Sie dieses Paket nur einmal pro Instanz. Es muss nicht mit jedem Service Pack neu installiert werden.

Weitere Informationen
Siehe:

Cache-Strategie cache-strategy

Zur Optimierung können auch verschiedene Caching-Methoden verwendet werden.

Aktivieren von AEM Dispatcher-Caching enable-aem-dispatcher-caching

Empfehlung

AEM Dispatcher ist der Cache der ersten Ebene im AEM-Dienst und erfolgt vor dem CDN-Cache.

Weitere Informationen

Siehe:

Verwenden eines Content Delivery Network (CDN) use-cdn

Empfehlung

GraphQL-Abfragen und ihre JSON-Antworten können im Cache gespeichert werden, wenn sie bei Verwendung eines CDN als GET-Anfragen anvisiert werden. Im Gegensatz dazu können nicht zwischengespeicherte Anfragen sehr teuer (ressourcenintensiv) sein und nur langsam verarbeitet werden, was weitere nachteilige Auswirkungen auf die Ursprungsressourcen bedeuten kann.

Weitere Informationen

Siehe:

Festlegen der HTTP-Cache-Control-Kopfzeilen set-http-cache-control-headers

Empfehlung

Bei der Verwendung von persistierten GraphQL-Abfragen mit einem CDN wird empfohlen, geeignete HTTP-Cache-Control-Kopfzeilen festzulegen.

Jede persistierte Abfrage kann über einen eigenen spezifischen Satz von Cache-Control-Kopfzeilen verfügen. Die Kopfzeilen können über die GraphQL-API.

Sie können auch mithilfe der cURL Befehlszeilen-Tool. Verwenden Sie beispielsweise eine PUT Anfrage zum Erstellen einer umschlossenen einfachen Abfrage mit Cache-Steuerung.

$ curl -X PUT \
    -H 'authorization: Basic YWRtaW46YWRtaW4=' \
    -H "Content-Type: application/json" \
    "http://localhost:4502/graphql/persist.json/wknd/plain-article-query-max-age" \
    -d \
'{ "query": "{articleList { items { _path author main { json } referencearticle { _path } } } }", "cache-control": { "max-age": 300 }}'

Weitere Informationen

Siehe:

GraphQL-Abfrageoptimierung graphql-query-optimization

Auf einer AEM-Instanz mit einer großen Anzahl von Inhaltsfragmenten, die dasselbe Modell verwenden, können GraphQL-Listenabfragen kostenintensiv sein (im Hinblick auf Ressourcen).

Das liegt daran, dass alle Fragmente, die dasselbe in der GraphQL-Abfrage verwendete Modell nutzen, in den Speicher geladen werden müssen. Dies erfordert Zeit und Speicherplatz. Eine Filterung, die die Anzahl der Elemente in der (endgültigen) Ergebnismenge verringern kann, kann nur nach dem Laden des gesamten Ergebnissatzes in den Speicher angewendet werden.

Dies kann den Eindruck erwecken, dass die Leistung auch bei kleinen Ergebnismengen schlecht ist. In Wirklichkeit wird das langsame Tempo jedoch durch die Größe des ursprünglichen Ergebnissatzes verursacht, da dieser intern verarbeitet werden muss, bevor die Filterung angewendet werden kann.

Um Leistungs- und Speicherprobleme zu vermeiden, muss diese anfängliche Ergebnismenge so klein wie möglich gehalten werden.

AEM bietet zwei Methoden zur Optimierung von GraphQL-Abfragen:

Jede Methode beinhaltet eigene Anwendungsfälle und Einschränkungen. In diesem Abschnitt finden Sie Informationen zur hybriden Filterung und zum Paging sowie einige Best Practices zur OPtimierung von GraphQL-Abfragen.

Verwenden der AEM GraphQL-Hybrid-Filterung use-aem-graphql-hybrid-filtering

Empfehlung

Hybride Filterung kombiniert JCR-Filterung mit AEM-Filterung.

Dabei wird ein JCR-Filter (in Form einer Abfragebegrenzung) angewendet, bevor der Ergebnissatz zur AEM-Filterung in den Speicher geladen wird. Dadurch soll der in den Speicher geladene Ergebnissatz verringert werden, da der JCR-Filter überflüssige Ergebnisse davor entfernt.

NOTE
Aus technischen Gründen (z. B. Flexibilität oder Verschachtelung von Fragmenten) kann AEM nicht die gesamte Filterung an JCR delegieren.

Bei dieser Methode wird die Flexibilität bewahrt, die GraphQL-Filter bieten, während gleichzeitig ein möglichst großer Teil der Filterung an JCR delegiert wird.

NOTE
AEM Hybridfilterung erfordert die Aktualisierung vorhandener Inhaltsfragmente

Weitere Informationen

Siehe:

Verwenden von GraphQL-Seitennummerierung use-aem-graphql-pagination

Empfehlung

Die Reaktionszeit komplexer Abfragen mit großen Ergebnismengen kann durch die Segmentierung von Antworten in Blöcke mithilfe der Seitennummerierung (ein GraphQL-Standard) verbessert werden.

GraphQL in AEM unterstützt zwei Arten der Paginierung:

  • begrenzungs-/offset-basierte Paginierung
    Dies wird für Listenabfragen verwendet. Diese enden mit List; zum Beispiel articleList.
    Um sie zu verwenden, müssen Sie die Position des ersten Elements angeben, das zurückgegeben werden soll (offset) und die Anzahl der zurückzugebenden Elemente (limit oder Seitengröße).

  • Cursor-basierte Paginierung (dargestellt durch first und after)
    Bei dieser Methode wird für jedes Element eine eindeutige ID bereitgestellt; auch als Cursor bezeichnet.
    In der Abfrage geben Sie den Cursor des letzten Elements der vorherigen Seite sowie die Seitengröße (die maximale Anzahl der zurückzugebenden Elemente) an.

    Da die Cursor-basierte Paginierung nicht zu den Datenstrukturen von listenbasierten Abfragen passt, hat AEM den Abfragetyp Paginated eingeführt, zum Beispiel articlePaginated. Die verwendeten Datenstrukturen und Parameter entsprechen der GraphQL Cursor ConnectionSpecification.

    note note
    NOTE
    AEM unterstützt derzeit Forward Paging (unter Verwendung der Parameter after/first).
    Backward Paging (mithilfe der Parameter before/last) wird nicht unterstützt.

Weitere Informationen

Siehe:

Verwenden von GraphQL-Sortierung use-graphql-sorting

Empfehlung

Die Sotierung ist ebenfalls ein GraphQL-Standard und ermöglicht es, dass Clients JSON-Inhalte in sortierter Reihenfolge empfangen. Dies kann die Notwendigkeit einer weiteren Verarbeitung auf dem Client verringern.

Die Sortierung ist nur dann effizient, wenn sich alle Sortierungskriterien auf Fragmente der obersten Ebene beziehen.

Wenn die Sortierreihenfolge ein oder mehrere Felder enthält, die sich auf einem verschachtelten Fragment befinden, müssen alle Fragmente, die das Modell der obersten Ebene gemeinsam verwenden, in den Speicher geladen werden. Dies führt zu Leistungseinbußen.

NOTE
Die Sortierung der Felder der obersten Ebene wirkt sich ebenfalls (wenn auch geringfügig) auf die Leistung aus.

Weitere Informationen

Siehe:

Best Practices best-practices

Das Hauptziel aller Optimierungsempfehlungen besteht darin, die anfängliche Ergebnismenge zu reduzieren. Die hier aufgeführten Best Practices bieten Möglichkeiten dazu. Sie können (und sollten) kombiniert werden.

Nur nach Eigenschaften der obersten Ebene filtern filter-top-level-properties-only

Derzeit funktioniert das Filtern auf JCR-Ebene nur für Fragmente der obersten Ebene.

Wenn sich ein Filter auf die Felder eines verschachtelten Fragments bezieht, muss AEM alle Fragmente, die das zugrunde liegende Modell gemeinsam nutzen, wieder in den Speicher laden.

Sie können diese GraphQL-Abfragen dennoch optimieren, indem Sie Filterausdrücke für Felder von Fragmenten der obersten Ebene und für Felder verschachtelter Fragmente mit dem AND-Operator kombinieren.

Inhaltsstruktur verwenden use-content-structure

In AEM wird generell empfohlen, die Repository-Struktur zu verwenden, um den Umfang der zu verarbeitenden Inhalte einzugrenzen.

Diese Methode sollte auch auf GraphQL-Abfragen angewendet werden.

Dies kann durch Anwendung eines Filters auf das Feld _path des Fragments der obersten Ebene geschehen:

{
  someList(filter: {
    _path: {
      _expressions: [
        {
          value: "/content/dam/some/sub/path/",
          _operator: STARTS_WITH
        }
      ]
    }
  }) {
    items {
      # ...
    }
  }
}
NOTE
Die Endung / auf value ist erforderlich, um die beste Leistung zu erzielen.

Verwenden Sie Paging use-paging

Sie können auch Paging verwenden, um die anfängliche Ergebnismenge zu reduzieren; insbesondere dann, wenn Ihre Anforderungen keine Filterung und Sortierung verwenden.

Wenn Sie verschachtelte Fragmente filtern oder sortieren, können die paginierten Abfragen immer noch langsam sein, da AEM möglicherweise weiterhin größere Mengen von Fragmenten in den Speicher laden muss. Wenn Sie also Filtern und Paging kombinieren, sollten Sie die Filterregeln beachten (wie oben erwähnt).

Für das Paging ist die Sortierung gleichermaßen wichtig, da paginierte Ergebnisse immer sortiert werden, entweder explizit oder implizit.

Wenn Sie in erster Linie daran interessiert sind, nur die ersten Seiten abzurufen, gibt es keinen signifikanten Unterschied zwischen der Verwendung der ...List- oder ...Paginated-Abfragen. Wenn Ihre Anwendung jedoch daran interessiert ist, mehr als ein oder zwei Seiten zu lesen, sollten Sie die ...Paginated-Abfrage in Erwägung ziehen, da sie bei den späteren Seiten deutlich besser funktioniert.

Logische Vorgänge in Filterausdrücken logical-operations-in-filter-expressions

Wenn Sie verschachtelte Fragmente filtern, können Sie weiterhin die JCR-Filterung nutzen, indem Sie einen begleitenden Filter für ein Feld der obersten Ebene bereitstellen, das mithilfe des AND-Operators kombiniert wird.

Ein typischer Anwendungsfall bestünde darin, den Umfang der Abfrage mithilfe eines Filters auf das Feld _path des Fragments der obersten Ebene einzugrenzen und dann zusätzliche Felder zu filtern, die sich möglicherweise auf der obersten Ebene oder in einem verschachtelten Fragment befinden.

In diesem Fall würden die verschiedenen Filterausdrücke mit AND kombiniert. Daher kann der Filter auf _path die anfängliche Ergebnismenge effektiv einschränken. Alle anderen Filter auf Feldern der obersten Ebene können ebenfalls dazu beitragen, den anfänglichen Ergebnissatz zu reduzieren, sofern sie mit AND kombiniert werden.

Filterausdrücke, die mit OR kombiniert sind, können nicht optimiert werden, wenn verschachtelte Fragmente vorliegen. OR-Ausdrücke können nur optimiert werden, wenn keine verschachtelten Fragmente vorliegen.

Vermeidung von Filtern bei mehrzeiliger Textfelder avoid-filtering-multiline-textfields

Die Felder eines mehrzeiligen Textfelds (HTML, Markdown, Plain text, JSON) können nicht über eine JCR-Abfrage gefiltert werden, da der Inhalt dieser Felder dynamisch berechnet werden muss.

Wenn Sie weiterhin ein mehrzeiliges Textfeld filtern müssen, sollten Sie die Größe des ursprünglichen Ergebnissatzes einschränken, indem Sie zusätzliche Filterausdrücke hinzufügen und sie mit AND kombinieren. Die Begrenzung des Umfangs durch Filterung des Felds _path ist auch ein guter Ansatz.

Vermeidung von Filtern bei virtueller Felder avoid-filtering-virtual-fields

Virtuelle Felder (die meisten Felder, die mit _ beginnen) werden während der Ausführung einer GraphQL-Abfrage berechnet und befinden sich daher außerhalb des Bereichs der JCR-basierten Filterung.

Eine wichtige Ausnahme bildet das Feld _path, das effektiv verwendet werden kann, um die Größe des ursprünglichen Ergebnissatzes zu reduzieren – falls der Inhalt entsprechend strukturiert ist (siehe Verwenden der Inhaltsstruktur).

Filter: Ausnahmen filtering-exclusions

Es gibt mehrere andere Situationen, in denen ein Filterausdruck nicht auf der JCR-Ebene bewertet werden kann (und daher vermieden werden sollte, um die beste Leistung zu erzielen):

  • Filterausdrücke in einem Float-Wert, der die Filteroption _sensitiveness verwendet, wobei _sensitiveness auf alles andere als 0.0 festgelegt ist.

  • Filterausdrücke in einem String-Wert, die die Filteroption _ignoreCase nutzen.

  • Filtern von null-Werten.

  • Filtern von Arrays mit _apply: ALL_OR_EMPTY.

  • Filtern von Arrays mit _apply: INSTANCES, _instances: 0.

  • Filterausdrücke mit dem CONTAINS_NOT-Operator.

  • Filterausdrücke in einem Calendar-, Date- oder Time-Wert, die den NOT_AT-Operator nutzen.

Minimieren der Verschachtelung von Inhaltsfragmenten minimize-content-fragment-nesting

Die Verschachtelung von Inhaltsfragmenten ist eine hervorragende Möglichkeit, benutzerdefinierte Inhaltsstrukturen zu modellieren. Sie können sogar ein Fragment mit einem verschachtelten Fragment mit einem verschachtelten Fragment haben, das … usw. aufweist.

Das Erstellen einer Struktur mit zu vielen Ebenen kann jedoch die Verarbeitungszeiten für eine GraphQL-Abfrage erhöhen, da GraphQL die gesamte Hierarchie aller verschachtelten Inhaltsfragmente durchlaufen muss.

Tiefes Verschachteln kann sich auch nachteilig auf die Inhaltsverwaltung auswirken. Im Allgemeinen wird empfohlen, die Verschachtelung von Inhaltsfragmenten auf weniger als fünf oder sechs Ebenen zu beschränken.

Nicht alle Formate ausgeben (mehrzeilige Textelemente) do-not-output-all-formats

AEM GraphQL kann Text zurückgeben, der im Datentyp Mehrzeiliger Text in mehreren Formaten verfasst wurde: Rich-Text, einfacher Text und Markdown.

Die Ausgabe aller drei Formate erhöht die Größe der Textausgabe in JSON um den Faktor drei. Dies kann zusammen mit generell großen Ergebnismengen aus sehr breiten Abfragen sehr große JSON-Antworten generieren, die daher lange für die Berechnung benötigen. Es ist besser, die Ausgabe auf die Textformate zu beschränken, die für das Rendern des Inhalts erforderlich sind.

Ändern von Inhaltsfragmenten modifying-content-fragments

Nehmen Sie Änderungen an Inhaltsfragmenten und deren Ressourcen nur mithilfe der AEM-UI oder APIs vor. Nehmen Sie keine Änderungen direkt in JCR vor.

Testen von Abfragen test-your-queries

Die Verarbeitung von GraphQL-Abfragen ähnelt der Verarbeitung von Suchabfragen und ist wesentlich komplexer als einfache API-Anfragen vom Stil GET-all-content.

Eine sorgfältige Planung, Prüfung und Optimierung Ihrer Abfragen in einer kontrollierten, produktionsfremden Umgebung ist von entscheidender Bedeutung für den späteren Erfolg bei der Verwendung in der Produktion.

recommendation-more-help
19ffd973-7af2-44d0-84b5-d547b0dffee2