參考資料:進階函數

勾選​ 函數 ​下拉式清單中的​ 顯示進階,即可存取這些函數。

表格函數和列函數 section_8977BE40A47E4ED79EB543A9703A4905

表格函數是表格每一列的輸出都相同。列函數則是表格每一列的輸出都不同。

「包括零」參數的意義是什麼? section_C7A2B05929584C65B308FD372CB8E8E3

此參數指出是否在計算中包括零。有時候零沒有意義,有時候卻很重要。

例如,如果您有「收入」量度,隨後新增「頁面檢視」量度至報表,您的收入會突然出現許多全都是零的列。您可能不希望這個結果影響到收入欄上的 MEAN、MIN、QUARTILE 等計算。在這種情況下,您可以勾選包括零參數。

另一方面,假設您有兩個感興趣的量度,因為其中一個的部分列是零而造成該量度的平均值或最小值比較高並不合理,這個時候您就不會勾選此參數來包括零。

concept_E14513FE464F4491AD0D4130D4EE621C

傳回其引數的值。使用 NOT 可確保其值不等於某個特定值。

NOTE
0 (零) 表示 False,其他值表示 True。
AND(logical_test1,[logical_test2],...)
引數
說明
logical_test1
必填.可評估為 TRUE 或 FALSE 的任何值或運算式。
logical_test2
選填。您要評估為 TRUE 或 FALSE 的其他條件

近似相異計數 (維度) concept_000776E4FA66461EBA79910B7558D5D7

傳回選定維度之維度項目的近似相異計數。此功能使用近似相異計數的 HyperLogLog (HLL) 方法。  其設定可保證值在 95% 的時間內皆為實際值的 5% 以內。

Approximate Count Distinct (dimension)
引數
維度
您希望近似相異項目計數的維度。

範例使用案例 section_424E3FC5092948F0A9D655F6CCBA0312

近似相異計數 (客戶 ID eVar) 是此函數的常見使用案例。

新「近似客戶」計算量度的定義:

這是可以在報表中使用「近似客戶」量度的方式:

超出不重複值 section_9C583858A9F94FF7BA054D1043194BAA

就如同 Count() 和 RowCount(),Approximate Count Distinct() 必須隨著「超出不重複值」限制變動。如果某維度的特定月份已達「超出不重複值」限制,此值將計為 1 個維度項目。

比較計數函數 section_440FB8FB44374459B2C6AE2DA504FC0B

Approximate Count Distinct() 是改良 Count() 和 RowCount() 函數後的成果。其可將建立的量度用於任何維度報表,藉此演算不同維度項目的近似計數。例如,用於「行動裝置類型」報表中的客戶 ID 計數。

由於使用 HLL 方法,而非像 Count() 與 RowCount() 那樣實際計數,此功能的準確度會稍微降低。

反餘弦 (列) concept_1DA3404F3DDE4C6BAF3DBDD655D79C7B

傳回量度的反餘弦 (或餘弦的反函數)。反餘弦是一種角度,其餘弦是數字。傳回的角度是限制在 0 (零) 到 pi 的弧度。如果您想將結果從弧度轉換為度,請將結果乘以 180/PI( )。

ACOS(metric)
引數
量度
您所要擷取之角度的餘弦,從 -1 到 1。

反正弦 (列) concept_90F00DEC46BA47F8A21493647D9668CD

傳回數字的反正弦。反正弦是一種角度,其正弦是數字。傳回的角度是限制在 -pi/2 到 pi/2 的弧度。若想以度表示反正弦,請將結果乘以 180/PI( )。

ASIN(metric)
引數
量度
您所要擷取之角度的餘弦,從 -1 到 1。

反正切 (列) concept_3408520673774A10998E9BD8B909E90C

傳回數字的反正切。反正切是一種角度,其正切是數字。傳回的角度是限制在 -pi/2 到 pi/2 的弧度。若想以度表示反正切,請將結果乘以 180/PI( )。

ATAN(metric)
引數
量度
您所要擷取之角度的餘弦,從 -1 到 1。

指數迴歸:預計 Y (列) concept_25615693312B4A7AB09A2921083502AD

已知 x 值 (metric_X),計算預計 y 值 (metric_Y),根據以下條件使用「最小平方」方法計算最佳配適線。

ESTIMATE.EXP(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

Cdf-T concept_4E2F2673532A48B5AF786521DE428A66

傳回值在 Student 的 t 分布中的百分比,其中自由度為 n,z 分數小於 x。

cdf_t( -∞, n ) = 0
cdf_t(  ∞, n ) = 1
cdf_t( 3, 5 ) ? 0.99865
cdf_t( -2, 7 ) ? 0.0227501
cdf_t( x, ∞ ) ? cdf_z( x )

Cdf-Z concept_99C97ACC40A94FADBCF7393A17BC2D12

傳回值在常態分布中的百分比,其中 z 分數小於 x。

cdf_z( -∞ ) = 0
cdf_z( ∞ ) = 1
cdf_z( 0 ) = 0.5
cdf_z( 2 ) ? 0.97725
cdf_z( -3 ) ? 0.0013499

上限 (列) concept_A14CDB1E419B4AA18D335E5BA2548346

傳回不小於給定值的最小整數。例如,如果您不想報表中的收入出現貨幣小數位數,而有個產品是 $569.34,則使用公式 CEILING(Revenue) 可將收入無條件進位至最接近的美金 $570。

CEILING(metric)
引數
說明
量度
您要四捨五入的量度。

餘弦 (列) concept_DD07AA1FB08145DC89B69D704545FD0A

傳回給定角度的餘弦。如果角度是以度表示,請將角度乘以 PI( )/180。

COS(metric)
引數
說明
量度
您要擷取餘弦的角度 (以弧度為單位)。

立方根 concept_BD93EFA45DF7447A8F839E1CA5B5F795

傳回數字的正立方根。數字的立方根是該數字的 1/3 乘冪值。

CBRT(metric)
引數
說明
量度
您要擷取立方根的量度。

累積 concept_3D3347797B6344CE88B394C3E39318ED

傳回最後 N 列 x 的總和 (依維度排序,使用字串型欄位的雜湊值)。

如果 N <= 0 則使用所有先前列。由於是依據維度排序,因此只適用於根據日期或路徑長度等自然順序排列的維度。

| Date | Rev  | cumul(0,Rev) | cumul(2,Rev) |
|------+------+--------------+--------------|
| May  | $500 | $500         | $500         |
| June | $200 | $700         | $700         |
| July | $400 | $1100        | $600         |

累積平均值 concept_ABB650962DC64FD58A79C305282D3E61

傳回最後 N 列的平均值。

如果 N <= 0 則使用所有先前列。由於是依據維度排序,因此只適用於根據日期或路徑長度等自然順序排列的維度。

NOTE
如果您想使用收入/訪客之類的比率量度,則此函數不適用,因為此函數會平均比率,而非將過去 N 期的收入相加、將過去 N 期的訪客數相加,然後再將兩者相除。請改為使用
cumul(revenue)/cumul(visitor)

等於 concept_A3B97152B5F74E04A97018B35734BEEB

傳回完全符合數值或字串值的項目。

指數迴歸_ 相關係數 (表格) concept_C18BBFA43C1A499293290DF49566D8D8

針對迴歸方程式,傳回兩個量度欄 (metric_Ametric_B) 之間的相關係數 r

CORREL.EXP(metric_X, metric_Y)
引數
說明
metric_X
您想與 metric_Y 建立關聯的量度。
metric_Y
您想與 metric_X 建立關聯的量度。

指數迴歸:截距 (表格) concept_0047206C827841AD936A3BE58EEE1514

針對以下迴歸方程式,傳回兩個量度欄 (metric_Xmetric_Y) 之間的截距 b

INTERCEPT.EXP(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

指數迴歸:斜率 (表格) concept_230991B0371E44308C52853EFA656F04

針對以下迴歸方程式,傳回兩個量度欄 (metric_Xmetric_Y) 之間的斜率 a

SLOPE.EXP(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

下限 (列) concept_D368150EC3684077B284EE471463FC31

傳回不大於給定值的最大整數。例如,如果您不想報表中的收入出現貨幣小數位數,而有個產品是 $569.34,則使用公式 FLOOR(Revenue) 可將收入無條件捨去至最接近的美金 $569。

FLOOR(metric)
引數
說明
量度
您要四捨五入的量度。

大於 concept_A83734A0C0C14646B76D2CC5E677C644

傳回數值計數大於輸入值的項目。

大於或等於 concept_8CA6DF1F84784D50849BF1C566AE1D37

傳回數值計數大於或等於輸入值的項目。

雙曲餘弦 (列) concept_79DD5681CE9640BDBA3C3F527343CA98

傳回數字的雙曲餘弦。

COSH(metric)
引數
說明
量度
您想找出雙曲餘弦的角度 (以弧度為單位)。

雙曲正弦 (列) concept_96230731600C45E3A4E823FE155ABA85

傳回數字的雙曲正弦。

SINH(metric)
引數
說明
量度
您想找出雙曲正弦的角度 (以弧度為單位)。

雙曲正切 (列) concept_BD249013732F462B9863629D142BCA6A

傳回數字的雙曲正切。

TANH(metric)
引數
說明
量度
您想要找到其雙曲正切的角度,單位為弧度。

IF (列) concept_6BF0F3EAF3EF42C288AEC9A79806C48E

如果您指定的條件評估為 TRUE 則 IF 函數會傳回某個值,如果條件評估為 FALSE 則傳回另一個值。

IF(logical_test, [value_if_true], [value_if_false])
引數
說明
logical_test
必填.可評估為 TRUE 或 FALSE 的任何值或運算式。
[value_if_true]
您想在 logical_test 引數評估為 TRUE 時傳回的值。(若未指定則此引數預設為 0。)
[value_if_false]
您想在 logical_test 引數評估為 FALSE 時傳回的值。(若未指定則此引數預設為 0。)

小於 concept_A4A85C0FDF944AACAD4B8B55699D1B11

傳回數值計數小於輸入值的項目。

小於或等於 concept_99D12154DE4848B1B0A6327C4322D288

傳回數值計數小於或等於輸入值的項目。

線性迴歸_ 相關係數 concept_132AC6B3A55248AA9C002C1FBEB55C60

Y = a X + b。傳回相關係數

線性迴歸_ 截距 concept_E44A8D78B802442DB855A07609FC7E99

Y = a X + b。傳回 b。

指數迴歸_ 預計 Y concept_9612B9BF106D4D278648D2DF92E98EFC

Y = a X + b。傳回 Y。

線性迴歸_ 斜率 concept_12352982082A4DDF824366B073B4C213

Y = a X + b。傳回 a。

以 10 為底的對數 (列) concept_4C65DF9659164261BE52AA5A95FD6BC1

傳回數字的以 10 為底的對數。

LOG10(metric)
引數
說明
量度
您要擷取以 10 為底之對數的正實數。

對數迴歸:相關係數 (表格) concept_F3EB35016B754E74BE41766E46FDC246

傳回兩個量度欄 (metric_Xmetric_Y) 之間,迴歸方程式 的相關係數 rY = a ln(X) + b。會使用 CORREL 方程式進行計算。

CORREL.LOG(metric_X,metric_Y)
引數
說明
metric_X
您想與 metric_Y 建立關聯的量度。
metric_Y
您想與 metric_X 建立關聯的量度。

對數迴歸:截距 (表格) concept_75A3282EDF54417897063DC26D4FA363

傳回兩個量度欄 (metric_Xmetric_Y) 之間,迴歸方程式 的截距 bY = a ln(X) + b 做為最小平方迴歸。會使用 INTERCEPT 方程式進行計算。

INTERCEPT.LOG(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

對數迴歸:預計 Y (列) concept_5F3A9263BBB84E6098160A4DFB9E3607

已知 y 值 (me ric_X),計算預計 x 值 (metric_Y),根據 Y = a ln(X) + b 使用「最小平方」方法計算最佳配適線。會使用 ESTIMATE 方程式進行計算。

在迴歸分析中,已知 y 值 (metric_X),此函數會計算預計 x 值 (metric_Y),使用對數計算迴歸方程式 Y = a ln(X) + b 的最佳配適線。a 值對應到每個 x 值,而 b 是常數值。

ESTIMATE.LOG(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

對數迴歸:斜率 (表格) concept_B291EFBE121446A6B3B07B262BBD4EF2

傳回兩個量度欄 (metric_Xmetric_Y) 之間,迴歸方程式 的斜率 aY = a ln(X) + b。會使用 SLOPE 方程式進行計算。

SLOPE.LOG(metric_A, metric_B)
引數
說明
metric_A
您要指定做為獨立資料的量度。
metric_B
您要指定為相依資料的量度。

自然對數 concept_D3BE148A9B84412F8CA61734EB35FF9E

傳回數字的自然對數。自然對數是以常數 e (2.71828182845904) 為底數。LN 是 EXP 函數的反函數。

LN(metric)
引數
說明
量度
您要擷取自然對數的正實數。

NOT concept_BD954C455A8148A3904A301EC4DC821E

如果數字為 0 則傳回 1,若為其他數字則傳回 0。

NOT(logical)
引數
說明
logical
必填.可評估為 TRUE 或 FALSE 的值或運算式。

使用 NOT 需要知道運算式 (<、>、=、<> 等)是傳回 0 還是 1 值。

不等於 concept_EC010B7A9D2049099114A382D662FC16

傳回所有不含輸入值的項目。

或 (列) concept_AF81A33A376C4849A4C14F3A380639D2

如果任何引數為 TRUE 則傳回 TRUE,若所有引數為 FALSE 則傳回 FALSE。

NOTE
0 (零) 表示 False,其他值表示 True。
OR(logical_test1,[logical_test2],...)
引數
說明
logical_test1
必填.可評估為 TRUE 或 FALSE 的任何值或運算式。
logical_test2
選填。您要評估為 TRUE 或 FALSE 的其他條件

Pi concept_41258789660D4A33B5FB86228F12ED9C

傳回常數 PI 3.14159265358979,精確至小數點第 15 位。

PI()

PI 函數沒有引數。

乘冪迴歸:相關係數 (表格) concept_91EC2CFB5433494F9E0F4FDD66C63766

針對 Y = b*X,傳回兩個量度欄 (metric_Xmetric_Y) 之間的相關係數 r

CORREL.POWER(metric_X, metric_Y)
引數
說明
metric_X
您想與 metric_Y 建立關聯的量度。
metric_Y
您想與 metric_X 建立關聯的量度。

乘冪迴歸:截距 (表格) concept_7781C85597D64D578E19B212BDD1764F

傳回兩個量度欄 (metric_Xmetric_Y) 之間,的截距 bY = b*X。

 INTERCEPT.POWER(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

乘冪迴歸:預計 Y (列) concept_CD652C0A921D4EFBA8F180CB8E486B18

已知 x 值 (metric_X),計算預測 y 值 (metric_Y),使用「最小平方」方法計算 Y = b*X 的最佳配適線。

 ESTIMATE.POWER(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

乘冪迴歸:斜率 (表格) concept_5B9E71B989234694BEB5EEF29148766C

傳回兩個量度欄 (metric_Xmetric_Y) 之間,) 的斜率 aY = b*X。

SLOPE.POWER(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

二次迴歸:相關係數 (表格) concept_9C9101A456B541E69BA29FCEAC8CD917

針對 Y=(a X+b)***,傳回兩個量度欄 (metric_Xmetric_Y) 之間的相關係數 r

CORREL.QUADRATIC(metric_X, metric_Y)
引數
說明
metric_X
您想與 metric_Y 建立關聯的量度。
metric_Y
您想與 metric_X 建立關聯的量度。

二次迴歸:截距 (表格) concept_69DC0FD6D38C40E9876F1FD08EC0E4DE

針對 Y=(a X+b)***,傳回兩個量度欄 (metric_Xmetric_Y) 之間的截距 b

INTERCEPT.POWER(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

二次迴歸:預計 Y (列) concept_2F1ED70B1BDE4664A61CC09D30C39CBB

已知 y 值 (metric_X),計算預測 x 值 (metric_Y),使用最小平方方法計算使用 Y=(a*X+b) 的最佳配適線。

ESTIMATE.QUADRATIC(metric_A, metric_B)
引數
說明
metric_A
您要指定做為獨立資料的量度。
metric_B
您要指定為相依資料的量度。

二次迴歸:斜率 (表格) concept_0023321DA8E84E6D9BCB06883CA41645

針對 Y=(a X+b)***,傳回兩個量度欄 (metric_X 和 metric_Y) 之間的斜率 a

SLOPE.QUADRATIC(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

倒數迴歸:相關係數 (表格) concept_EBEC509A19164B8AB2DBDED62F4BA2A5

傳回兩個量度欄 (metric_Xmetric_Y) 之間,的相關係數 rY = a/X+b。

CORREL.RECIPROCAL(metric_X, metric_Y)
引數
說明
metric_X
您想與 metric_Y 建立關聯的量度。
metric_Y
您想與 metric_X 建立關聯的量度。

倒數迴歸:截距 (表格) concept_2DA45B5C69F140EC987649D2C88F19B3

傳回兩個量度欄 (metric_Xmetric_Y) 之間,的截距 bY = a/X+b。

INTERCEPT.RECIPROCAL(metric_A, metric_B)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

倒數迴歸:預計 Y (列) concept_2CF4B8F417A84FE98050FE488E227DF8

已知 y 值 (metric_X),計算預計 x 值 (metric_Y),使用最小平方方法計算使用 Y = a/X+b 的最佳配適線。

ESTIMATE.RECIPROCAL(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

倒數迴歸:斜率 (表格) concept_8A8B68C9728E42A6BFDC6BD5CBDCCEC5

傳回兩個量度欄 (metric_Xmetric_Y) 之間,) 的斜率 aY = a/X+b。

SLOPE.RECIPROCAL(metric_X, metric_Y)
引數
說明
metric_X
您要指定做為獨立資料的量度。
metric_Y
您要指定做為相依資料的量度。

正弦 (列) concept_21C8C3AA835947A28B53A4E756A7451E

傳回給定角度的正弦。如果角度是以度表示,請將角度乘以 PI( )/180。

SIN(metric)
引數
說明
量度
您要擷取正弦的角度 (以弧度為單位)。

T 分數 concept_80D2B4CED3D0426896B2412B4FC73BF7

Z 分數的別名,即平均值偏差除以標準差

T 檢定 concept_A1F78F4A765348E38DBCAD2E8F638EB5

執行 m 尾 t 檢定,使用 col 的 t 分數和 n 自由度。

簽名是 t_test( x, n, m )。底下其只呼叫了 m*cdf_t(-abs(x),n)。(這與 z 檢定函數執行 m*cdf_z(-abs(x)) ) 類似)。

在此,m 是反面的數目,而 n 是自由度。這些應該為數字 (在整個報表中為常數,例如,不會逐列變更)。

X 是 t 檢定的統計資料,且經常會是基於量度的公式 (例如 zscore),並在每列進行評估。

傳回值是在給定自由度和反面的數目下,出現檢定統計資料 x 的機率。

範例:

  1. 用其找出極端值:

    code language-none
    t_test( zscore(bouncerate), row-count-1, 2)
    
  2. 將其與 if 合併,以便忽略非常高或非常低的反彈率,然後統計其他項目上的造訪率:

    code language-none
    if ( t_test( z-score(bouncerate), row-count, 2) < 0.01, 0, visits )
    

正切 concept_C25E00CB17054263AB0460D9EF94A700

傳回給定角度的正切。如果角度是以度表示,請將角度乘以 PI( )/180。

TAN (metric)
引數
說明
量度
您要擷取正切的角度 (以弧度為單位)。

Z 分數 (列) concept_96BEAC79476C49B899DB7E193A5E7ADD

根據常態分布傳回 Z 分數 (常態計分)。Z 分數是觀察值偏離平均值之標準差的數字。Z 分數為 0 (零) 表示分數與平均值相同。Z 分數可為正或負,代表其高於或低於平均值多少標準差。

Z 分數的方程式為:

其中 x 是原始分數、μ 是族群平均值,σ 是族群標準差。

NOTE
μ (mu) 和 σ (sigma) 會自動從量度中計算得出。

Z 分數 (量度)

引數
說明
量度
傳回其第一個非零引數的值。

Z 檢定 concept_2A4ADD6B3AEB4A2E8465F527FAFC4C23

執行 n 尾 Z 檢定,使用 A 的 Z 分數。

傳回可在欄中看到目前列的機率。

NOTE
此處假設值為常態分布。
recommendation-more-help
46b8682c-fda6-4669-9355-1a44923e549e