異常値検出
作成対象:
- ユーザー
- 管理者
この従来のReport Builderのアドインバージョンは引き続き機能します。 従来のワークブックを新しいReport Builderに 変換できます。
異常値検出は、統計的なモデリングを使用して、データ内の予期しないトレンドを自動的に見つけます。モデルによって指標を分析し、値の下限、上限、予想される範囲を決定します。予期しないスパイクまたは下落が発生した場合にレポートします。
調査できる異常値の例を次に示します。
- 平均注文額の急激な下落
- 売上の低い注文の急増
- トライアル登録の急増または下落
- ランディングページ表示の下落
- ビデオのバッファーイベントの下落
- ビデオの低ビットレートの下落
異常値検出の指標
異常値検出により、選択する各指標に次のような新しい指標が追加されます。
予測区間の下限の水準。この水準よりも下の値は異常と見なされます。
値がこの水準を上回る信頼度は 95 %です。
予測区間の上限の水準。この水準よりも上の値は異常と見なされます。
値がこの水準を下回る信頼度は 95 %です。
Report Builder では、選択した指標にこれらの値が適用されます。例えば、ページビュー指標を選択して異常値検出を適用した場合は、Page Views Lower Bound
の指標が使用されます。
異常値検出の計算方法
異常値検出では、1 日あたりの予測区間データの計算、学習およびレポート作成のために、トレーニング期間が使用されます。このトレーニング期間は、通常状態と異常状態を識別し、学習したことをレポート期間に適用するための履歴的な期間です。マーケティングレポートでは、30 日、60 日および 90 日のトレーニング期間を利用できます。Report Builderでは、30 日が利用可能です。
トレーニング期間は、選択したレポート期間と同一でない場合もあります。レポートグラフには、カレンダーで指定した日付範囲の期間が表示されます。
データを計算するために、各指標の日次合計がトレーニング期間と比較されます。そのために、次のアルゴリズムが使用されます。
- ホルトウィンタース乗法(三重指数平滑法)
- ホルトウィンタース加法(三重指数平滑法)
- ホルトウィンタース補正(二重指数平滑法)
各アルゴリズムは、誤差の二乗和(SSE)が最小になるアルゴリズムを決定するために適用されます。次に、平均絶対誤差率(MAPE)および現在の標準誤差が計算され、モデルが統計的に妥当であることが確認されます。
これらのアルゴリズムは、将来の期間における指標の予測を表示するように拡張できます。
トレーニング期間はレポート期間の開始時点によって異なるので、同じ日付に対してレポートされたデータでも、それらが含まれる期間が異なれば、差が生じる可能性があります。
例えば、1 月 1 日から 14 日までのレポートを実行し、次に 1 月 7 日から 21 日までのレポートを実行した場合、この 2 種類のレポートの 1 月 7 日から 14 日までの同じ指標について、異なる予測データが表示される場合があります。これは、トレーニング期間の違いによります。