Prise en main de Data Science Workspace pour les spécialistes des données

Découvrez Data Science Workspace dans Adobe Experience Platform. Cette liste de lecture est conçue pour les spécialistes des données qui souhaitent apprendre à utiliser les notebooks JupyterLab pour obtenir des informations et des données de requête, créer des jeux de données activés pour le profil, publier des modèles d’apprentissage automatique automatisés et activer des insights appris par la machine pour les applications Adobe et non-Adobe.

https://video.tv.adobe.com/v/3412911?learn=on

Présentation de l’espace de travail de science des données

Présentation de l’espace de travail de science des données

L’objectif de l’apprentissage automatique sur Adobe Experience Platform est de démocratiser la science des données en utilisant l’expertise du domaine des produits, clients et partenaires d’Adobe afin de créer un écosystème de services intelligents pour alimenter la prochaine génération d’expériences client. Data Science Workspace facilite l’accès aux données omnicanal, la création de modèles, la mise en oeuvre de modèles avec un déploiement en un clic et la consommation d’informations sur les modèles en les partageant via des profils client en temps réel. Cette vidéo donne un aperçu de Data Science Workspace et de la valeur qu’il offre aux entreprises.

372

https://video.tv.adobe.com/vc/3412911/fre_fr.json

{ "description": "L’objectif de l’apprentissage automatique sur Adobe Experience Platform est de démocratiser la science des données en utilisant l’expertise du domaine des produits, clients et partenaires d’Adobe afin de créer un écosystème de services intelligents pour alimenter la prochaine génération d’expériences client. Data Science Workspace facilite l’accès aux données omnicanal, la création de modèles, la mise en oeuvre de modèles avec un déploiement en un clic et la consommation d’informations sur les modèles en les partageant via des profils client en temps réel. Cette vidéo donne un aperçu de Data Science Workspace et de la valeur qu’il offre aux entreprises.", "duration": "PT0H6M12S", "embedUrl": "https://video.tv.adobe.com/v/3412911/", "name": "Présentation de l’espace de travail de science des données", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926155-100x56.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926155-150x85.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926155-200x113.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926155-220x124.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-236x133.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-290x163.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-420x236.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-640x360.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-666x375.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926156-720x405.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926157-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/d9c21206-8491-4b87-a739-da056b4883de/d05f1c3d9b7f42059ec6e97645c6dae8_1672926157-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2023-01-05T13:37:48Z", "hasPart": [], "educationLevel": [ "Beginner" ], "learningResourceType": "Présentation de l’espace de travail de science des données" }

https://video.tv.adobe.com/v/332368?learn=on

Présentation de l’architecture de Data Science Workspace

Présentation de l’architecture de Data Science Workspace

Cette vidéo décrit l’architecture globale et illustre les principaux composants de Data Science Workspace dans Adobe Experience Platform.

281

https://video.tv.adobe.com/vc/332368/fre_fr.json

{ "description": "Cette vidéo décrit l’architecture globale et illustre les principaux composants de Data Science Workspace dans Adobe Experience Platform.", "duration": "PT0H4M41S", "embedUrl": "https://video.tv.adobe.com/v/332368/", "name": "Présentation de l’architecture de Data Science Workspace", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624067-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624068-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/498beb52-326b-4e3d-9ade-1d3f6f729d31/652fd7ee67d1435596b2f96d8b7e56ed_1616624069-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-03-24T21:18:03Z", "hasPart": [ { "@type": "Clip", "name": "Data Collection", "startOffset": 14, "endOffset": 47, "url": "https://video.tv.adobe.com/v/332368/?t=14" }, { "@type": "Clip", "name": "Streaming data path", "startOffset": 48, "endOffset": 60, "url": "https://video.tv.adobe.com/v/332368/?t=48" }, { "@type": "Clip", "name": "Batch data collection", "startOffset": 61, "endOffset": 92, "url": "https://video.tv.adobe.com/v/332368/?t=61" }, { "@type": "Clip", "name": "Data Science Workspace", "startOffset": 93, "endOffset": 167, "url": "https://video.tv.adobe.com/v/332368/?t=93" }, { "@type": "Clip", "name": "Model operationalization ", "startOffset": 168, "endOffset": 222, "url": "https://video.tv.adobe.com/v/332368/?t=168" }, { "@type": "Clip", "name": "Model insight outputs", "startOffset": 223, "endOffset": 281, "url": "https://video.tv.adobe.com/v/332368/?t=223" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Présentation de l’architecture de Data Science Workspace" }

https://video.tv.adobe.com/v/333312?learn=on

Création du schéma de cours et du jeu de données

Création du schéma de cours et du jeu de données

Découvrez comment créer le jeu de données et le schéma du cours Data Science Workspace utilisés dans le reste du cours.

246

https://video.tv.adobe.com/vc/333312/fre_fr.json

{ "description": "Découvrez comment créer le jeu de données et le schéma du cours Data Science Workspace utilisés dans le reste du cours.", "duration": "PT0H4M6S", "embedUrl": "https://video.tv.adobe.com/v/333312/", "name": "Création du schéma de cours et du jeu de données", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666631-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666632-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/74615293-146a-46f0-bc7b-652c25c82769/df3464f2f8ae42c49810ebd9e628b5e9_1622666633-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:13:10Z", "hasPart": [ { "@type": "Clip", "name": "Begin demo", "startOffset": 17, "endOffset": 35, "url": "https://video.tv.adobe.com/v/333312/?t=17" }, { "@type": "Clip", "name": "Create the dataset schema", "startOffset": 36, "endOffset": 59, "url": "https://video.tv.adobe.com/v/333312/?t=36" }, { "@type": "Clip", "name": "Add schema field groups", "startOffset": 60, "endOffset": 97, "url": "https://video.tv.adobe.com/v/333312/?t=60" }, { "@type": "Clip", "name": "Set Primary ID", "startOffset": 98, "endOffset": 136, "url": "https://video.tv.adobe.com/v/333312/?t=98" }, { "@type": "Clip", "name": "Create a new dataset", "startOffset": 137, "endOffset": 185, "url": "https://video.tv.adobe.com/v/333312/?t=137" }, { "@type": "Clip", "name": "Ingest data using batch mode", "startOffset": 186, "endOffset": 222, "url": "https://video.tv.adobe.com/v/333312/?t=186" }, { "@type": "Clip", "name": "Preview the data", "startOffset": 223, "endOffset": 246, "url": "https://video.tv.adobe.com/v/333312/?t=223" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Création du schéma de cours et du jeu de données" }

https://video.tv.adobe.com/v/345257?learn=on

Chargement des données dans les blocs-notes JupyterLab

Chargement des données dans les blocs-notes JupyterLab

Cette vidéo explique comment créer un notebook JupyterLab et charger des données à partir de Adobe Experience Platform. Il indique également comment améliorer les performances de votre notebook lorsque vous utilisez de grandes quantités de données.

224

https://video.tv.adobe.com/vc/345257/fre_fr.json

{ "description": "Cette vidéo explique comment créer un notebook JupyterLab et charger des données à partir de Adobe Experience Platform. Il indique également comment améliorer les performances de votre notebook lorsque vous utilisez de grandes quantités de données.", "duration": "PT0H3M44S", "embedUrl": "https://video.tv.adobe.com/v/345257/", "name": "Chargement des données dans les blocs-notes JupyterLab", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393056-100x56.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393057-150x84.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393057-200x113.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393057-220x124.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393057-236x133.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393057-290x186.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393058-420x236.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393058-640x360.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393058-666x374.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393058-720x405.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393058-960x540.jpg", "https://images-tv.adobe.com/mpcv3/bdc332ce-3e7a-429d-87b2-42548446b7ba/1ff30e2b-bad1-4b18-85bc-149f687f0eff/5afa39db8bbf4bb18663040b5c489070_1658393059-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2022-07-21T08:41:16Z", "hasPart": [], "educationLevel": [ "Beginner" ], "learningResourceType": "Chargement des données dans les blocs-notes JupyterLab" }

https://video.tv.adobe.com/v/333311?learn=on

Requête et découverte de données dans Data Science Workspace

Requête et découverte de données dans Data Science Workspace

Adobe Experience Platform vous permet d’utiliser le langage de requête structuré (SQL) dans l’espace de travail de science des données en intégrant Query Service à JupyterLab en tant que fonctionnalité standard.

555

https://video.tv.adobe.com/vc/333311/fre_fr.json

{ "description": "Adobe Experience Platform vous permet d’utiliser le langage de requête structuré (SQL) dans l’espace de travail de science des données en intégrant Query Service à JupyterLab en tant que fonctionnalité standard.", "duration": "PT0H9M15S", "embedUrl": "https://video.tv.adobe.com/v/333311/", "name": "Requête et découverte de données dans Data Science Workspace", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908158-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908159-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908160-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/29b8bfc5-d0c5-4282-b40e-e6225efb9e9d/b4ed3303c5df4bf1abe50b315ed6abb8_1624908161-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:11:33Z", "hasPart": [ { "@type": "Clip", "name": "Why Query Service?", "startOffset": 25, "endOffset": 113, "url": "https://video.tv.adobe.com/v/333311/?t=25" }, { "@type": "Clip", "name": "Using Query Service", "startOffset": 114, "endOffset": 180, "url": "https://video.tv.adobe.com/v/333311/?t=114" }, { "@type": "Clip", "name": "Components of Query Service", "startOffset": 181, "endOffset": 196, "url": "https://video.tv.adobe.com/v/333311/?t=181" }, { "@type": "Clip", "name": "Start Demo", "startOffset": 197, "endOffset": 234, "url": "https://video.tv.adobe.com/v/333311/?t=197" }, { "@type": "Clip", "name": "Import libraries", "startOffset": 235, "endOffset": 273, "url": "https://video.tv.adobe.com/v/333311/?t=235" }, { "@type": "Clip", "name": "Configure Query Service in Notebooks", "startOffset": 274, "endOffset": 296, "url": "https://video.tv.adobe.com/v/333311/?t=274" }, { "@type": "Clip", "name": "Find your dataset", "startOffset": 297, "endOffset": 392, "url": "https://video.tv.adobe.com/v/333311/?t=297" }, { "@type": "Clip", "name": "Data discovery", "startOffset": 393, "endOffset": 420, "url": "https://video.tv.adobe.com/v/333311/?t=393" }, { "@type": "Clip", "name": "Query: hourly activity", "startOffset": 421, "endOffset": 475, "url": "https://video.tv.adobe.com/v/333311/?t=421" }, { "@type": "Clip", "name": "Query: Top 10 pages", "startOffset": 476, "endOffset": 512, "url": "https://video.tv.adobe.com/v/333311/?t=476" }, { "@type": "Clip", "name": "Conclusion", "startOffset": 513, "endOffset": 555, "url": "https://video.tv.adobe.com/v/333311/?t=513" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Requête et découverte de données dans Data Science Workspace" }

https://video.tv.adobe.com/v/333310?learn=on

Analyse des données exploratoires dans Data Science Workspace

Analyse des données exploratoires dans Data Science Workspace

Le tutoriel sur l’analyse des données exploratoires (EDA) est conçu pour vous aider à découvrir des schémas dans les données, à vérifier la cohérence des données et à résumer les données pertinentes pour les modèles prédictifs.

654

https://video.tv.adobe.com/vc/333310/fre_fr.json

{ "description": "Le tutoriel sur l’analyse des données exploratoires (EDA) est conçu pour vous aider à découvrir des schémas dans les données, à vérifier la cohérence des données et à résumer les données pertinentes pour les modèles prédictifs.", "duration": "PT0H10M54S", "embedUrl": "https://video.tv.adobe.com/v/333310/", "name": "Analyse des données exploratoires dans Data Science Workspace", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665337-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665338-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/41825c6c-eb27-4002-ab7b-9e4c299861c1/64d3c78ea6264f6db67e8f3a76b25468_1622665339-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-15T22:05:37Z", "hasPart": [ { "@type": "Clip", "name": "What is EDA?", "startOffset": 34, "endOffset": 140, "url": "https://video.tv.adobe.com/v/333310/?t=34" }, { "@type": "Clip", "name": "Start demo", "startOffset": 141, "endOffset": 206, "url": "https://video.tv.adobe.com/v/333310/?t=141" }, { "@type": "Clip", "name": "Set prediction variable", "startOffset": 207, "endOffset": 234, "url": "https://video.tv.adobe.com/v/333310/?t=207" }, { "@type": "Clip", "name": "Data aggregation and goal creation", "startOffset": 235, "endOffset": 272, "url": "https://video.tv.adobe.com/v/333310/?t=235" }, { "@type": "Clip", "name": "Merge features with a goal", "startOffset": 273, "endOffset": 315, "url": "https://video.tv.adobe.com/v/333310/?t=273" }, { "@type": "Clip", "name": "Missing values and outliers", "startOffset": 316, "endOffset": 423, "url": "https://video.tv.adobe.com/v/333310/?t=316" }, { "@type": "Clip", "name": "Univariate analysis", "startOffset": 424, "endOffset": 560, "url": "https://video.tv.adobe.com/v/333310/?t=424" }, { "@type": "Clip", "name": "Bivariate analysis", "startOffset": 561, "endOffset": 623, "url": "https://video.tv.adobe.com/v/333310/?t=561" }, { "@type": "Clip", "name": "Important numerical features", "startOffset": 624, "endOffset": 654, "url": "https://video.tv.adobe.com/v/333310/?t=624" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Analyse des données exploratoires dans Data Science Workspace" }

https://video.tv.adobe.com/v/333380?learn=on

Présentation des recettes, des modèles et des services

Présentation des recettes, des modèles et des services

Découvrez les recettes, les modèles et les services dans Adobe Experience Platform Data Science Workspace.

528

https://video.tv.adobe.com/vc/333380/fre_fr.json

{ "description": "Découvrez les recettes, les modèles et les services dans Adobe Experience Platform Data Science Workspace.", "duration": "PT0H8M48S", "embedUrl": "https://video.tv.adobe.com/v/333380/", "name": "Présentation des recettes, des modèles et des services", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666009-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666010-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666011-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fc33fb27-af02-49e0-b84e-e65be4f291e2/d768bf8846ae4a5081f832b80a6db3bb_1622666011-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-19T00:46:45Z", "hasPart": [ { "@type": "Clip", "name": "Components recap", "startOffset": 37, "endOffset": 60, "url": "https://video.tv.adobe.com/v/333380/?t=37" }, { "@type": "Clip", "name": "Machine learning process", "startOffset": 61, "endOffset": 75, "url": "https://video.tv.adobe.com/v/333380/?t=61" }, { "@type": "Clip", "name": "Modeling", "startOffset": 76, "endOffset": 103, "url": "https://video.tv.adobe.com/v/333380/?t=76" }, { "@type": "Clip", "name": "Recipes", "startOffset": 104, "endOffset": 128, "url": "https://video.tv.adobe.com/v/333380/?t=104" }, { "@type": "Clip", "name": "Experimentation", "startOffset": 129, "endOffset": 156, "url": "https://video.tv.adobe.com/v/333380/?t=129" }, { "@type": "Clip", "name": "Publish a service", "startOffset": 157, "endOffset": 177, "url": "https://video.tv.adobe.com/v/333380/?t=157" }, { "@type": "Clip", "name": "Consume insights", "startOffset": 178, "endOffset": 198, "url": "https://video.tv.adobe.com/v/333380/?t=178" }, { "@type": "Clip", "name": "Machine learning algorithms", "startOffset": 199, "endOffset": 205, "url": "https://video.tv.adobe.com/v/333380/?t=199" }, { "@type": "Clip", "name": "Supervised learning", "startOffset": 206, "endOffset": 280, "url": "https://video.tv.adobe.com/v/333380/?t=206" }, { "@type": "Clip", "name": "Unsupervised learning", "startOffset": 281, "endOffset": 316, "url": "https://video.tv.adobe.com/v/333380/?t=281" }, { "@type": "Clip", "name": "Reinforcement learning", "startOffset": 317, "endOffset": 356, "url": "https://video.tv.adobe.com/v/333380/?t=317" }, { "@type": "Clip", "name": "Accuracy", "startOffset": 357, "endOffset": 374, "url": "https://video.tv.adobe.com/v/333380/?t=357" }, { "@type": "Clip", "name": "Precision", "startOffset": 375, "endOffset": 404, "url": "https://video.tv.adobe.com/v/333380/?t=375" }, { "@type": "Clip", "name": "Model tuning", "startOffset": 405, "endOffset": 436, "url": "https://video.tv.adobe.com/v/333380/?t=405" }, { "@type": "Clip", "name": "Hyperparameters", "startOffset": 437, "endOffset": 528, "url": "https://video.tv.adobe.com/v/333380/?t=437" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Présentation des recettes, des modèles et des services" }

https://video.tv.adobe.com/v/333427?learn=on

Analyse des performances du modèle

Analyse des performances du modèle

Découvrez certaines des différentes méthodes utilisées pour analyser les performances d’un modèle, telles qu’une matrice de confusion, la précision, le rappel et la précision.

254

https://video.tv.adobe.com/vc/333427/fre_fr.json

{ "description": "Découvrez certaines des différentes méthodes utilisées pour analyser les performances d’un modèle, telles qu’une matrice de confusion, la précision, le rappel et la précision.", "duration": "PT0H4M14S", "embedUrl": "https://video.tv.adobe.com/v/333427/", "name": "Analyse des performances du modèle", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663567-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663568-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/52001ec0-b22e-4f50-a875-e72c81f1056c/246a1cb3706b4853a107f5adb9a9f442_1622663569-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-21T22:48:02Z", "hasPart": [ { "@type": "Clip", "name": "Selecting metrics", "startOffset": 35, "endOffset": 120, "url": "https://video.tv.adobe.com/v/333427/?t=35" }, { "@type": "Clip", "name": "Model evaluation demo", "startOffset": 121, "endOffset": 254, "url": "https://video.tv.adobe.com/v/333427/?t=121" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Analyse des performances du modèle" }

https://video.tv.adobe.com/v/333570?learn=on

Créez un modèle à l’aide du modèle de créateur de recettes.

Créez un modèle à l’aide du modèle de créateur de recettes.

Cette vidéo présente l’utilisation du modèle de créateur de recettes dans le lanceur de JupyterLab pour former et noter un modèle de propension et créer une recette.

501

https://video.tv.adobe.com/vc/333570/fre_fr.json

{ "description": "Cette vidéo présente l’utilisation du modèle de créateur de recettes dans le lanceur de JupyterLab pour former et noter un modèle de propension et créer une recette.", "duration": "PT0H8M21S", "embedUrl": "https://video.tv.adobe.com/v/333570/", "name": "Créez un modèle à l’aide du modèle de créateur de recettes.", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665502-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665503-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665504-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/d5910e19-d9e4-4b4d-846a-b5894dcbfcca/cddc7f88a55c4cb9b309ef467a78b0b0_1622665504-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-27T19:52:55Z", "hasPart": [ { "@type": "Clip", "name": "Configure datasets", "startOffset": 38, "endOffset": 104, "url": "https://video.tv.adobe.com/v/333570/?t=38" }, { "@type": "Clip", "name": "Training data loader", "startOffset": 105, "endOffset": 241, "url": "https://video.tv.adobe.com/v/333570/?t=105" }, { "@type": "Clip", "name": "Scoring data loader", "startOffset": 242, "endOffset": 260, "url": "https://video.tv.adobe.com/v/333570/?t=242" }, { "@type": "Clip", "name": "Pipeline file", "startOffset": 261, "endOffset": 294, "url": "https://video.tv.adobe.com/v/333570/?t=261" }, { "@type": "Clip", "name": "Evaluator file", "startOffset": 295, "endOffset": 360, "url": "https://video.tv.adobe.com/v/333570/?t=295" }, { "@type": "Clip", "name": "Data saver file", "startOffset": 361, "endOffset": 397, "url": "https://video.tv.adobe.com/v/333570/?t=361" }, { "@type": "Clip", "name": "Create a recipe", "startOffset": 398, "endOffset": 501, "url": "https://video.tv.adobe.com/v/333570/?t=398" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Créez un modèle à l’aide du modèle de créateur de recettes." }

https://video.tv.adobe.com/v/333595?learn=on

Création et publication d’un modèle formé

Création et publication d’un modèle formé

Découvrez comment créer, former, évaluer et publier un modèle à l’aide d’une recette créée avec le notebook du créateur de recettes JupyterLab.

184

https://video.tv.adobe.com/vc/333595/fre_fr.json

{ "description": "Découvrez comment créer, former, évaluer et publier un modèle à l’aide d’une recette créée avec le notebook du créateur de recettes JupyterLab.", "duration": "PT0H3M4S", "embedUrl": "https://video.tv.adobe.com/v/333595/", "name": "Création et publication d’un modèle formé", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664594-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664595-960x540.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/5715b3dc-d55b-4105-86ce-f134a818016d/294bde8d6ebb4d90aec0c94d418a39ad_1622664596-1920x1080.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-28T02:34:38Z", "hasPart": [ { "@type": "Clip", "name": "Find your recipe", "startOffset": 9, "endOffset": 45, "url": "https://video.tv.adobe.com/v/333595/?t=9" }, { "@type": "Clip", "name": "Create a model from a recipe", "startOffset": 46, "endOffset": 94, "url": "https://video.tv.adobe.com/v/333595/?t=46" }, { "@type": "Clip", "name": "Start a scoring run", "startOffset": 95, "endOffset": 128, "url": "https://video.tv.adobe.com/v/333595/?t=95" }, { "@type": "Clip", "name": "Publish a model as a Service", "startOffset": 129, "endOffset": 184, "url": "https://video.tv.adobe.com/v/333595/?t=129" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Création et publication d’un modèle formé" }

https://video.tv.adobe.com/v/333596?learn=on

Planification de la formation et de la notation automatisées d’un service

Planification de la formation et de la notation automatisées d’un service

Découvrez comment configurer la formation et la notation automatisées d’un service dans Data Science Workspace.

172

https://video.tv.adobe.com/vc/333596/fre_fr.json

{ "description": "Découvrez comment configurer la formation et la notation automatisées d’un service dans Data Science Workspace.", "duration": "PT0H2M52S", "embedUrl": "https://video.tv.adobe.com/v/333596/", "name": "Planification de la formation et de la notation automatisées d’un service", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666197-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/6e6c789e-0e6e-470e-bcf3-629817b20b20/66a35a68557546909ea40cd7e3e3f98d_1622666198-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-05-28T03:47:01Z", "hasPart": [ { "@type": "Clip", "name": "Service UI", "startOffset": 8, "endOffset": 25, "url": "https://video.tv.adobe.com/v/333596/?t=8" }, { "@type": "Clip", "name": "Create a training schedule", "startOffset": 26, "endOffset": 93, "url": "https://video.tv.adobe.com/v/333596/?t=26" }, { "@type": "Clip", "name": "Create a scoring schedule", "startOffset": 94, "endOffset": 150, "url": "https://video.tv.adobe.com/v/333596/?t=94" }, { "@type": "Clip", "name": "Update or remove a schedule", "startOffset": 151, "endOffset": 172, "url": "https://video.tv.adobe.com/v/333596/?t=151" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Planification de la formation et de la notation automatisées d’un service" }

https://video.tv.adobe.com/v/333711?learn=on

Utilisation de la sortie d’apprentissage automatique dans la segmentation

Utilisation de la sortie d’apprentissage automatique dans la segmentation

Découvrez comment les sorties de modèle Workspace Data Science peuvent être utilisées dans Real-time Customer Profile et la segmentation.

387

https://video.tv.adobe.com/vc/333711/fre_fr.json

{ "description": "Découvrez comment les sorties de modèle Workspace Data Science peuvent être utilisées dans Real-time Customer Profile et la segmentation.", "duration": "PT0H6M27S", "embedUrl": "https://video.tv.adobe.com/v/333711/", "name": "Utilisation de la sortie d’apprentissage automatique dans la segmentation", "thumbnailUrl": [ "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-100x56.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-150x84.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664768-200x113.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-220x124.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-236x133.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-290x186.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-420x236.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-640x360.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664769-666x374.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-1920x1080.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-720x405.jpg", "https://images-tv.adobe.com/mpcv3/eafa326a-6d93-48ba-a6ff-d9b7d64a56e0/fb484bd9-609d-43e8-ba5e-94cee855439e/2bd71bd88b1d4a648588165ddc645a98_1622664770-960x540.jpg" ], "@type": [ "VideoObject", "LearningResource" ], "uploadDate": "2021-06-01T01:49:19Z", "hasPart": [ { "@type": "Clip", "name": "Understanding Real-time Customer Profile", "startOffset": 12, "endOffset": 90, "url": "https://video.tv.adobe.com/v/333711/?t=12" }, { "@type": "Clip", "name": "Profile lookup", "startOffset": 91, "endOffset": 195, "url": "https://video.tv.adobe.com/v/333711/?t=91" }, { "@type": "Clip", "name": "Modify the Profile dashboard", "startOffset": 196, "endOffset": 239, "url": "https://video.tv.adobe.com/v/333711/?t=196" }, { "@type": "Clip", "name": "Create a segment", "startOffset": 240, "endOffset": 311, "url": "https://video.tv.adobe.com/v/333711/?t=240" }, { "@type": "Clip", "name": "Activate a segment", "startOffset": 312, "endOffset": 387, "url": "https://video.tv.adobe.com/v/333711/?t=312" } ], "educationLevel": [ "Beginner" ], "learningResourceType": "Utilisation de la sortie d’apprentissage automatique dans la segmentation" }