Développement de l’administrateur Recommendations du produit

Product Recommendations est un puissant outil marketing que vous pouvez utiliser pour augmenter les conversions, augmenter les recettes et stimuler l’engagement des acheteurs. Les Recommendations produit sont affichées sur le storefront sous la forme d’unités telles que "Les clients qui ont consulté ce produit ont également consulté", "Les clients qui ont acheté ce produit ont également acheté", "Recommandé pour vous", etc. Adobe Commerce Product Recommendations est optimisé par Adobe Sensei, qui utilise une intelligence artificielle et des algorithmes d’apprentissage automatique pour effectuer une analyse approfondie des données d’acheteurs agrégées. Ces données, lorsqu’elles sont combinées à votre catalogue Commerce, génèrent des expériences hautement attrayantes, pertinentes et personnalisées pour l’acheteur.

NOTE
Si votre vitrine est mise en oeuvre à l’aide de PWA Studio, reportez-vous à la documentation du PWA. Si vous utilisez une technologie front-end personnalisée telle que React ou Vue JS, reportez-vous au guide d’utilisation pour découvrir comment intégrer Product Recommendations dans un environnement headless. Les instances sans affichage doivent implémenter des événements pour alimenter l’espace de travail de recommandation de produit.

Présentation de l’architecture

À un niveau élevé, les Recommendations de produits Commerce sont déployés en tant que SaaS. Le côté Commerce comprend le storefront, qui contient le collecteur d’événements et le modèle de mise en page des recommandations, ainsi que le serveur principal, qui inclut les services de données, le module d’exportation SaaS et l’interface utilisateur d’administration. Les services de renseignement Adobe Sensei sont utilisés du côté SaaS.

Diagramme d’architecture des recommandations de produits

Une fois les modules de recommandation installés et configurés, votre vitrine commence à collecter des données comportementales. Adobe Sensei traite ces données comportementales avec vos données de catalogue et calcule les associations de produits qui sont exploitées par le service de recommandations. À ce stade, le marchand peut créer, gérer et déployer des unités de recommandations de produits sur son storefront directement depuis l’interface utilisateur d’administration.

Étapes suivantes

Lisez les rubriques suivantes pour commencer à utiliser Product Recommendations :

recommendation-more-help
4bf3c55a-3844-4322-a5d2-42b4e56228e5