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This document reviews the the use of log-likelihood ratios as a similarity metric

in item-item recommendation algorithms. We discuss its origin in likelihood ratio

tests in statistical literature, and provide a precise definition when employed in

recommendation systems.

Likelihood ratio tests are a class of statistical test used to compare the goodness of fit

for two statistical models. The test statistic is the likelihood ratio, which is essentially the a

ratio of the likelihoods of the data under each model. The hypothesis test which. motivates

such a test statistic typically proceeds as follows.

Consider two hypotheses for the distributions of data, each parametrized by a different

distributional parameter θ:

H0 : θ ∈ Θ0, (1)

H1 : θ ∈ Θ1 (2)

where Θ1 is typically disjoint from Θ0 (e.g. if Θ is the full space of parameters θ, Θ1 ≡ Θ\Θ0

).

If we assume the data is IID, consisting of samples x = x1, x2, . . . xn and comes from

some unknown probability density function, f , the likelihood of the data is

L(θ;x1, . . . , xn) = f(x1, x2, . . . xn|θ) =
n∏
i=1

f(xi|θ). (3)

The likelihood ratio is then the quantity

λ =
maxθ∈Θ0 L(θ;x)

maxθ∈Θ1 L(θ;x)
(4)

Often it is much simpler to compute maxima of the log-likelihood functions, `(θ;x) =

logL(θ;x), and so we compute that log-likelihood ratio −2 log λ. We compute this statistic,

and then reject the null hypothesis if the likelihood ratio is less than some critical value c

(or equivalently, the log-likelihood ratio is greater than some critical value −2 log c.
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This may seem awfully formal, but to take a concrete example which we will develop

further when considering recommender systems, we can imagine that we have two datasets

comprising a series of Bernoulli (binary) trials. We wish to ask whether the two datasets

come from the same, or different distributions. In such a scenario, the number of successes in

each dataset will be distributed according to a binomial distribution, and our null hypothesis

is that both datasets are described by a binomial distribution with the same probability of

success p0. The alternative hypothesis is that each dataset is generated by separate Bernoulli

processes with different probabilities of success p1 and p2. To complete the example, note

that Θ is the set of all possible values for the probability of success for both distributions,

Θ0 will be subset of this where both distributions have an identical probability of success

p0, while Θ1 is the complement of that set (i.e. both distribution have different sets of

parameters).

Application to recommendation systems

In recommender systems we often need to recommend items based on some notion of sim-

ilarity, e.g. people who viewed/bought item A, also viewed/bought item B. For concreteness,

let us focus on the question of “viewed A, bought B”, but this discussion applies equally to

any other combination of viewed/purchased.

A simple (and naive) metric for calculating item similarities is to use their raw cooc-

currence scores. In this case of “people who viewed A, bought B,” this cooccurrence is

essentially the unnormalized probability

p(bought B|viewed A) =
number of people who bought B and viewed A

number of people who viewed A

=
cooccurrence

number of people who viewed A
. (5)

However cooccurrence based similarity suffers from the problem of recommending items

that are globally popular. Essentially, globally popular items (i.e. those that are viewed or

purchased by lots of people), will naturally have the highest cooccurrences, and so will end

up being recommended with lots of items, despite them not being very specific to each item.

We instead must find items to recommend that are anomalously relevant.

Thus, a better way to phrase the question of similarities is: “are viewing item A and
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purchasing item B independent processes?”, i.e. if

p(bought B|viewed A) ≈ p(bought B|not viewed A) ≈ p(bought B),

then items A and B are not related, and should not be recommended together. Conversely,

if these conditional probabilities are very different, this indicates an anomalously relevant

pair of items.

To test whether or not these conditional probabilities are related , we begin with the

contingency table

B ∼ B

A k1 n1 − k1

∼ A k2 n2 − k2

Here, ∼ B means “did not purchase B” etc. So here, we have n1 people who viewed A, of

whom k1 also purchased B, while n2 people did not view A, of whom k2 purchased B.

The question before the house is whether p(B|A)
?
= p(B| ∼ A), i.e. whether the two

rows of this contingency table are generated by the same probability distribution. Assuming

the process of purchasing items is a Bernoulli process (for each user), the number of success

(purchases of B) comes from a binomial distribution Bin(n, p). Dividing our dataset into

those who viewed A (XBA) and did not view A (XB∼A), The null and alternative hypotheses

are

H0 : p(B|A) = p(B| ∼ A), i.e. XBA ∼ Bin(nA, p0) and XB∼A ∼ Bin(n∼A, p0) (6)

H1 : p(B|A) 6= p(B| ∼ A), i.e. XBA ∼ Bin(nA, p1) and XB∼A ∼ Bin(n∼A, p2) (7)

The likelihood ratio is then

λ =
maxp

[(
n1

k1

)
pk10 (1− p0)n1−k1 ·

(
n2

k2

)
pk20 (1− p0)n2−k2

]
maxp1,p2

[(
n1

k1

)
pk11 (1− p1)n1−k1 ·

(
n2

k2

)
pk22 (1− p2)n2−k2

] (8)

Some simple manipulations yield maximum likelihood estimates for p0, p1 and p2 of

p∗0 =
k1 + k2

n1 + n2

, p∗1 =
k1

n1

, p∗2 =
k2

n2

(9)

And so we find the log-likelihood ratio to be

−2 log λ = 2 [logL(p∗1, k1, n1) + logL(p∗2, k2, n2)− logL(p∗0, k1, n1)− logL(p∗0, k2, n2)] (10)
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where

logL(p, k, n) = k log p+ (n− k) log(1− p) (11)

The crucial leap is to then use this test statistic (−2 log λ) as a similarity metric for deter-

mining which items should be recommended together, i.e. we are not interested in accepting

or rejecting the null hypothesis, but we simply use the test statistic to rank item similarities.

Here, a large −2 log λ indicates a λ much smaller than 1, and so distributions that are more

likely to have different means, i.e. better item similarity.
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