Adobe® Marketing Cloud
Video Analytics Implementation Guide 1.5 for
JavaScript

Contents

Video Analytics Implementation Guide 1.5 for JavaScript........cccecccvecccnnscscnseccensecccnnecd

Getting StArte@d ON JAVASCHIPT. ..ttt tssssss s sssnses 4
Download the SDK 4
Implement the JavaScript library 5

IMPIEMENTATION GUILE. ...ttt sttt s s bbb bbb s s s s s sassas s s sesss s s s s ssnseas 6
Configure AppMeasurement 6
How the JavaScript VideoPlayerPluginDelegate Works 7
Implement VideoPlayerPluginDelegate - JS 8
Attaching Custom Metadata 11
Standard Metadata Parameters 12
Standard metadata keys for JavaScript 14
Sample implementation on JavaScript 15
Configure the Video Heartbeat Library 16
Track Player Events 17
Track Methods and Player Events 19
Test Your Video Measurement Code 21

Video MeasUremMENT PArameTErs... ... ceeuereusesseseesessessssssessssssssssssssssssesssesssssssssssessssssssssssssssssesssssasssssess 22

SAMIPIE PIAYET .ottt tiseessises s sase s bbbt s bbbt bbbttt st s bases 26

DEDUGGING .ttt sstssa sttt s sss st bbb e st bbb R bbbt 26
Enable Debug Logging 26
Validate implementations 27
Adobe Debug 27
Heartbeats parameters 28
Adobe Analytics parameters 32

RaAtings Partners INTEGIAtiON. ... rereciieietseiseiseisessessesssssssssssssssssessessssssssssssssassssssssssssssssssssssssssssasssssssssssess 33

Y el <] T o L3P 33
Scenario and Timeline lllustrations 33
Tracking Explained 35
Non-Linear Tracking Scenarios 51
Pause tracking 52

Last updated 5/9/2017

Video Analytics Implementation Guide 1.5 for
JavaScript

Contents

Contact and Legal INfOrMAtiON ...t assanes 55

Last updated 5/9/2017 Video Analytics Implementation Guide 1.5 for
JavaScript

Video Analytics Implementation Guide 1.5 for 4
JavaScript

Video Analytics Implementation Guide 1.5 for JavaScript

This section contains instructions to download the video heartbeat SDKs and developer guides for your platform. Make sure
you also download the developer guide that is in the docs folder when you download the SDK as it contains the specific
implementation instructions for video heartbeat.

Platform Process

avaScript
Javaserip See Implementation Guide.

Getting started on JavaScript
Before you can use Video Heartbeat 1.5x and 1.6.x in JavaScript, you must complete a few tasks.

Setting up the Marketing Cloud account

To set up the Marketing Cloud account, contact an Adobe representative. After the Marketing Cloud account is set for video
analytics, you must enable the Visitor ID service to use Video Heartbeat.

Prerequisites to implementing

Before you start implementing Video Heartbeat for Android in the next section, ensure that you have completed the following
tasks:

« Valid implementation for ADBMobile for JavaScript in your application.

For more information about the Adobe Mobile SDK documentation, see Android SDK 4.x for Marketing Cloud Solutions.
« Visitor ID service should be implemented.

For more information about the Visitor ID service, see Marketing Cloud ID Service.
« Valid configuration parameters for Video Heartbeat.

These parameters can be obtained from an Adobe representative after you set up the video analytics account.

« This guide is intended for a media integration engineer who has an understanding of the APIs and workflow of the media
player being instrumented. Implementing these APIs requires that your media player provide the following:

 An API to subscribe to player events.

The media heartbeat requires that you call a set of simple APIs when events occur in your player.

» An API or class that provides player information, such as the media name and play head position.

Download the SDK
The video heartbeat library is distributed using a public Github repository.

1. Browse to Adobe Github Video Heartbeat and download the latest release for your platform.

2. Extract the zip, and copy Vi deoHear t beat . m n. j s to a location accessible to your project. Optionally, copy the
non-minified version to your project for debugging.

3. Save the sanpl es folder to a location where the sample project can be reviewed and tested.

Your next step is to Configure AppMeasurement.

https://marketing.adobe.com/resources/help/en_US/mobile/android/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://github.com/Adobe-Marketing-Cloud/video-heartbeat/releases

Video Analytics Implementation Guide 1.5 for 5
JavaScript

Implement the JavaScript library

After you download the Android SDK and add it to your project, you can collect video metrics, such as initiates, content starts,
ad starts, ad completes, content completes and so on.

Get the JavaScript SDK

Before you get the SDK, you must set up a mobile SDK and download the Video Heartbeat SDK. For more information, see
Getting started on JavaScript.

1. Expand the Vi deoHear t beat Li br ar y- andr oi d- v2. *. zi p file that you downloaded.

For more information about downloading this file, see Getting started on JavaScript.

2. Verify that the Vi deoHear t beat . j ar file exists in the | i bs directory:

This library is used with Android devices and simulators for video heartbeat tracking APIs.

Add the SDK to your project
To add the SDK to your Intelli] IDEA project:

Right click your project in the Project navigation panel.

Select Open Module Settings.

Under Project Settings, select Libraries.

Click + to add a new library.

Select Java and navigate to the Vi deoHear t beat . j ar file.
Select the modules where you plan to use the mobile library.
Click Apply and then OK to close the Module Settings window.

NS » e

To add the SDK to your Eclipse project:

In the Eclipse IDE, right-click on the project name.

Click Build Path > Add External Archives.

Select Vi deoHear t beat . j ar.

Click Open.

Right-click the project again, and click Build Path > Configure Build Path.
Click the Order and Export tabs.

Ensure that the Vi deoHear t beat . j ar file is selected.

Nk » b

Adding app permissions

The VideoHeartbeat Library requires the following permissions to send data in tracking calls:

o | NTERNET
o ACCESS_NETWORK_STATE

To add these permissions, add the following lines to your Andr oi dMani f est . xm file in the application project directory:

e <uses- perm ssi on androi d: nanme="andr oi d. per m ssi on. | NTERNET" />
e <uses- perm ssi on androi d: nane="andr oi d. per m ssi on. ACCESS NETWORK_STATE" />

Video Analytics Implementation Guide 1.5 for 6
JavaScript

Implementation Guide

This guide describes how to add video heartbeat measurement to any video player that provides a JavaScript API. Most web-based
players provide a JavaScript API, even if the underlying video is delivered in Flash or other video formats.

This section was last updated 06/18/2015.

For example, the following players can be tracked using JavaScript:

« YouTube

« Brightcove

« Kaltura

« Ooyala

« HTML 5 (using native JavaScript support in the web browser and the HTML 5 video events).

For other players, implementing video heartbeat measurement requires that your video player provides a JavaScript API with
the following:

» An API to subscribe to player events. The video heartbeat SDK requires that you call a set of simple functions as actions occur
in your player.

o An API or class that provides player information, such as video name and playhead location. The video heartbeat SDK requires
that you implement an interface that returns current video information.

Requirements

Integrating video heartbeat library requires the following:

« Existing Analytics implementation. These instructions assume that you have an existing implementation of AppMeasurement
that is also using the Marketing Cloud Visitor ID Service. To implement Analytics or the Marketing Cloud Visitor ID Service,
see the Adobe Analytics Implementation Guide and the Marketing Cloud Visitor ID Service Guide.

Vi deo heartbeat library. (download instructions are in this guide)

Note: Make sure your Analytics implementation is configured to send data to a development report suite before you start
development.

Example Implementations

An example is available in the sanpl es folder that is included with the video heartbeat library.

Implementation Process

Complete the following steps to add video heartbeat tracking to your player:

Configure AppMeasurement

The JavaScript implementation is configured similar to the ActionScript implementation on your website. The standard Analytics
Variables are all available. Video Heartbeat also requires that you implement the Marketing Cloud visitor ID service.

1. Instantiate and configure the Marketing Cloud visitor ID service:
/'l Visitor

var visitor = new Visitor("lNSERT- MCORG | D- HERE") ;

visitor.tracki ngServer = "I NSERT- TRACKI NG SERVER- HERE" ;

http://www.w3.org/2010/05/video/mediaevents.html
https://marketing.adobe.com/resources/help/en_US/sc/implement/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://marketing.adobe.com/resources/help/en_US/sc/implement/?f=c_sc_variables
https://marketing.adobe.com/resources/help/en_US/sc/implement/?f=c_sc_variables
https://marketing.adobe.com/resources/help/en_US/mcvid/

Video Analytics Implementation Guide 1.5 for 7
JavaScript

2. Instantiate and configure AppMeasurement:
/'l AppMeasur enment

var appMeasurenment = new AppMeasuremnent ();

appMeasurenent.visitor = visitor;

appMeasur enent . tracki ngServer = <tracking-server>;

appMeasur enment . account = <rsi d>;

/1 ... other AppMeasurenent-specific configs (e.g., pageNane, currency etc.)
At a minimum, configure the following three variables:

« appMeasur enment . account
e appMeasur enent . t racki ngServer
e appMeasurenent.visitor

Next step: Implement VideoPlayerPluginDelegate - JS.

How the JavaScript VideoPlayerPluginDelegate Works

Examples to understand the interaction between the player event listeners, the track functions, and the
Vi deoPl ayer Pl ugi nDel egat e on JavaScript.

Note: This video player plugin delegate was previously named Pl ayer Del egat e in version 1.4.

If you have reviewed the Track Methods and Player Events topic, you might have noticed that none of the t r ack methods take
any parameters. Instead of passing video name, playhead information, and chapter information directly to these methods, video
heartbeat uses a Vi deoPl ayer Pl ugi nDel egat e class (ADB_VHB_Vi deoPl ayer Pl ugi nDel egat e on iOS) that is queried
for this information instead. As part of your implementation, you are required to extend this class to provide specific information
about your player.

To understand the interaction between the player event listeners, the track functions, and the Vi deoPl ayer Pl ugi nDel egat e,
consider the following examples:

Event Listeners
VideoPlayerPlugin Track Functions

In the t r ackVi deoPl ay() JavaScript function you assigned to handle the pl ay event, you would call
Vi deoPl ayer Pl ugi n. trackPl ay() to let video heartbeat know that playback has started:

function trackVi deoPl ay() {
Vi deoPl ayer Pl ugi n. trackPl ay() ;
i

Note that no video information is passed to the t rackPl ay() .
VideoPlayerPluginDelegate

When the video heartbeat t r ack. . . methods are called, your implementation of Vi deoP| ayer Pl ugi nDel egat e is queried
automatically as needed to provide any required details about the video, ad, or chapter. This removes the need for you to

Video Analytics Implementation Guide 1.5 for 8
JavaScript

determine exactly what information is needed by each track function. You can provide a single object that returns the most
current information available. The following is a simple example:

function Sanpl eVi deoPl ayer Pl ugi nDel egat e(pl ayer) {
this. _player = player;
}

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get Vi deol nfo = function() {

var videolnfo = new Vi deol nfo();

videolnfo.id = this._player.getVideold(); // e.g. “vidl23-a”

vi deol nfo. nane = this. _player.getVideoNane(); // e.g. “My sanple video”

videol nfo.length = this._player.getVideoLength(); // e.g. 240 seconds

vi deol nf 0. st reanfype Asset Type. ASSET_TYPE_VOD;

vi deol nf o. pl ayer Name = this._player.getNane(); // e.g. “Sanple video player”

vi deol nfo. pl ayhead = this._player.getCurrentPl ayhead(); // e.g. 115 (obtained fromthe
vi deo pl ayer)

return videol nfo;

e

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get AdBreakl nfo = function() {
return null; // no ads in this scenario

e

Sanpl eVi deoPl ayer Pl ugi nDel egat e. prot ot ype. get Adl nfo = function() ({
return null; // no ads in this scenario

e

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get ChapterInfo = function() {
return null; // no chapters in this scenario

e

Sanpl eVi deoPl ayer Pl ugi nDel egat e. prot ot ype. get QSInfo = function() {
return null; // no QS information in this sanple

[

Note: The onError callback that was part of the Pl ayer Del egat e in version 1.4 is removed from the
Vi deoPl ayer Pl ugi nDel egat e in version 1.5.

In this example, when t r ackPl ay is called, your instance of Vi deol nf o is read to determine the current offset of the video to
calculate time played. The querying happens automatically: you are required only to extend Vi deoPl ayer Pl ugi nDel egat e
and provide an instance of the extended class as a parameter to Vi deoPl ayer Pl ugi n when you initialize video heartbeat.

Make sure you take a close look at the sample players to see how Vi deoPl ayer Pl ugi nDel egat e is extended.

Implement VideoPlayerPluginDelegate - JS

The VideoPlayerPluginDelegate is used by video heartbeat to get information about the currently playing video, ad, and chapter.
Note: This video player plugin delegate was previously named Pl ayer Del egat e in version 1.4.

The Vi deoPl ayer Pl ugi nDel egat e interface is where you will typically spend a majority of your implementation time.

To get started creating your own Vi deoPl ayer Pl ugi nDel egat e implementation, create a new object that uses
ADB. va. Vi deoP| ayer Pl ugi nDel egat e as the object prototype:

var nyDel egate = new Vi deoPl ayer Pl ugi nDel egat e() ;

Now that you have a player delegate, you need to define the functions that return information about your video and player:
function Vi deoPl ayer Pl ugi nDel egate() {}

Vi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get Vi deol nfo = function() {};

Vi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get AdBreakl nfo = function() {};

Video Analytics Implementation Guide 1.5 for 9
JavaScript

Vi deoPl ayer Pl ugi nDel egat e. prot ot ype. get Adlnfo = function() {};
Vi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get ChapterInfo = function() {};
Vi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get Q@SI nfo = function() {};

With that framework in place, the following sections explain how to update these methods to return useful data from your
player:

o Video Information

o Ad Break Information

« Ad Information

o Chapter Information

o Example

Video Information

The get Vi deol nf o method returns a Vi deol nf o object that contains details about the video player and the currently playing
video. Before you can define this object, you'll need to use the API documentation provided by your player to find out how video
information is retrieved. Video information is usually a property of the player object or retrieved using a private method.

For example, In HTML 5, the playhead is a property of the <vi deo> element:
docunent . get El enent Byl d(' novi e'). current Ti ne;

In the YouTube API, the playhead is returned by a method call exposed by the player:
pl ayer. get Current Ti me() ;

To implement your custom get Vi deol nf o method, you'll need the following information:

Parameter Required? Description

pl ayer Name Yes The name of the video player that is playing back the main content.

id Yes The ID of the video asset.

nane No The name of the video asset (opaque string value).

| ength Yes The duration (in seconds) of the video asset. If st r eanilype is set to vod, return the

length of the video. For other video types, return -1 as the length.

pl ayhead Yes The current playhead location (in seconds) inside the video asset (excluding ad content)
at the moment this method was called.

st reanType Yes The type of the video asset.

r esuned No Set to t r ue if this is a resumed video playback session (for example, when playback of
VOD content starts from where the user previously left it).

After you have figured out how to get the required information, update the get Vi deol nf o method to return a Vi deol nf o
object with the video information. How you populate each value is up to you, and varies based on your player. For example,
you might load the video player name using a configuration file, or you could hard-code the value if you use only one player.

Ad Break Information

Ad breaks provide insight as to when a particular ad was displayed. For example, if you have a pre-roll and a midpoint ad break,
you can collect position data along with the specific ad data. If you have only one ad break, you can simply provide 1 for the
position and leave the name blank.

Video Analytics Implementation Guide 1.5 for 10
JavaScript

Parameter Required? Description

pl ayer Nare Yes The name of the video player responsible with playing back the current advertisement
break.

nanme No The name of the ad-break.

position Yes The position (index) of the pod inside the main content (starting with 1).

startTime No The offset of the ad-break inside the main content (in seconds). Defaults to the playhead

inside the main content at the moment of the t r ackAdSt art call.

Ad Information

Ad information is retrieved using a similar process used to retrieve video information, except you return an Adl nf o object
instead with details about the currently playing video ad. Use the API documentation provided by your Ad vendor to determine

the following:
Parameter Required? Description
id Yes The ID of the ad asset.
l ength Yes The duration (in seconds) of the ad asset.
position Yes The position (index) of the ad inside the parent ad-break (starting with 1).
name No The name of the ad asset (opaque string value).

After you have figured out how to get the required information, update the get Adl nf o method to return an Adl nf o object
with the ad information.

Chapter Information

If you are tracking chapters, you'll need to coordinate the chapter information returned with each call you make to
trackChapt er St ar t . Since chapters are likely defined by you and not your video player, you'll need a way to retrieve chapter
definitions to populate this object.

Parameter Required? Description

name No The name of the chapter (opaque string value).

l ength Yes The duration (in seconds) of the chapter.

posi tion Yes The position of the chapter inside the main content (starting from 1).
startTinme Yes The offset inside the main content where the chapter starts.

Update the get Chapt er | nf o method to retrieve properties or call the required APIs.

Example

The following is an example of a valid video player plugin delegate:
function Sanpl eVi deoPl ayer Pl ugi nDel egat e(pl ayer) {

this. _player = player;

Video Analytics Implementation Guide 1.5 for
JavaScript

11

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get Vi deol nfo = function() {
var vi deol nfo = new Vi deol nfo();
videolnfo.id = this. _player.getVideold(); // e.g. “vidl23-a”
vi deol nfo. name = this._player.getVideoNane(); // e.g. “My sanple video”
vi deol nfo.length = this._player.getVideoLength(); // e.g. 240 seconds
vi deol nf 0. st reaniType = Asset Type. ASSET_TYPE_VOD;
vi deol nf o. pl ayer Nane = this. player.getNane(); // e.g. “Sanple video player”

vi deol nf o. pl ayhead = this._player.getCurrentPlayhead(); // e.g. 115 (obtained fromthe
vi deo pl ayer)

return videol nfo;

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get AdBreakl nfo = function() {

return null; // no ads in this scenario

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get Adl nfo = function() {

return null; // no ads in this scenario

Sanpl eVi deoPl ayer Pl ugi nDel egat e. pr ot ot ype. get ChapterInfo = function() {

return null; // no chapters in this scenario

Sanpl eVi deoPl ayer Pl ugi nDel egat e. prot ot ype. get QSInfo = function() {
return null; // no QS information in this sanple

};

Next step: Configure the Video Heartbeat Library

Attaching Custom Metadata

You can attach your own metadata to calls made to Adobe Analytics.

The video heartbeat library provides support for custom metadata to be attached to the analytics calls. The relevant APIs for
this functionality are defined on the AdobeAnal yti csPl ugi n:

AdobeAnal yti csPl ugi n. prot ot ype. set Vi deoMet adata = function(data) {};
AdobeAnal yti csPl ugi n. prot ot ype. set AdMvet adata = function(data) {};
AdobeAnal yti csPl ugi n. prot ot ype. set Chapt er Met adata = functi on(data) {};

Video Analytics Implementation Guide 1.5 for 12
JavaScript

The integration code may call these methods on the AdobeAnal yti csPl ugi n to set custom metadata for the video, the ad
and/or the chapter. The metadata for the video will be automatically associated with the ads and chapters.

You need to set the metadata before calling the relevantt r ack. . . () method on the Vi deoPl ayer Pl ugi n by completing the
following tasks:

« Set the video metadata before calling t r ackVi deoLoad()
o Set the ad metadata before calling t rackAdSt ar t ()
o Set the chapter metadata before calling t r ackChapt er Start ()

This will ensure that the metadata is taken into consideration by the video heartbeat library when processing the t r ack. . . ()
call.

The code snippet below illustrates how to set custom metadata for video, ads and chapters:

/1l Before calling trackVideolLoad():
adobeAnal yti csPl ugi n. set Vi deoMet adat a({
i sUser Loggedl n: "fal se",
tvStation: "Sanple TV station",
programer: "Sanple progranmer"”

)
...

/1 Before calling trackAdStart():
adobeAnal yti csPl ugi n. set AdMet adat a({
affiliate: "Sanple affiliate",
canpai gn: "Sanpl e ad canpai gn"
DE

Il
/1 Before calling trackChapterStart():

adobeAnal yti csPl ugi n. set Chapt er Met adat a({
segnment Type: "Sanpl e segnment type"
1)

Note: Clearing the custom metadata - The custom metadata set on the AdobeAnal yt i csPI ugi n is persistent. It is not
reset automatically by the video heartbeat library. To clear the custom metadata, you can pass NULL as the input argument
foreach of theset . . . Met adat a() methods. For example, you should do this for ads and chapters once they are complete.
Otherwise, the custom metadata will be applied to subsequent ads / chapters. It is your responsibility to ensure that the
appropriate metadata is set before the t r ackVi deoLoad() /trackAdStart () /trackChapterStart() call

Standard Metadata Parameters

List of data-collection parameters sent by video heartbeat.
A Important: This feature is valid only on Mobile and JavaScript platforms.

This section contains the following:

« Video metadata

o Ad metadata

Video Analytics Implementation Guide 1.5 for

JavaScript

13

Video metadata

Name

Show

Season

Episode

Asset ID

Genre

First air date

First Digital Date

Content Rating

Originator

Network

Show type

Ad Loads

MVPD

Authorized

Day Part

Feed Type

Context data key

a. medi a. show

a. medi a. season

a. nedi a. epi sode

a. nedi a. asset

a. nedi

a. nedi

a. nedi

a. nedi

a. nedi

a. nedi

a. nedi

a. nedi

a. medi

a. medi

a. nedi

a. nedi

.genre

.airDate

.digital Date

.rating

.originator

. network

.type

. adLoad

. pass. mvpd

. pass. auth

. dayPart

.feed

Description

Data type: String

Data type: String

Data type: String

This is the TMS_I D, an industry
standard ID to identify a piece of
TV/video content. TMS = Tribune

Media Service, which is now known
as Gracenote.

Data type: String
Data type: String

Original TV air date of the asset.

Data type: String

First date when this video asset was
available on Digital.

Data type: String
Data type: String
Data type: String
Data type: String
Data type: String
Data type: String
Data type: String
Data type: String
Data type: String
This determines the type of feed. For

example, for living programming, the
feed types are East HD or West HD.

Metadata key name

SHOW

SEASON

EPI SODE

ASSET_I D

GENRE

FI RST_Al R_DATE

FI RST_DI G TAL_DATA

RATI NG

ORI G NATOR

NETVORK

SHOW TYPE

AD_LOAD

MPD

AUTHORI ZED

DAY _PART

FEED

Video Analytics Implementation Guide 1.5 for 14
JavaScript
Name Context data key Description Metadata key name

Stream Format

Ad metadata

Property name

Advertiser

Campaign ID

Creative ID

Placement ID

Site ID

Creative URL

a. medi a. f or nat

Context data key

a. nedi a. ad. adverti ser

. medi a. ad. canpai gn

.medi a. ad. creative

. medi a. ad. pl acenent

Data type: String
STREAM_FORNMAT
Clip Classification. If the content is a -
full episode, pass a value of 1;
otherwise pass a value of 0. The
default value is 0.

Data type: String

Description Metadata key name
ADVERTI SER

The company or brand whose product

is featured in the ad.

Data Type: String

. CAMPAI GN_I D

Client paramaters. -

Data Type: String
CREATI VE_I D

Client paramaters.

Data Type: String

. PLACEMENT_I D
Client paramaters. -

Data Type: String

a.nedia.ad.site

a. nedi a. ad. creati veURL

Client paramaters.

Data Type: String

The URL of the creative or ad that is

being delivered.

Data Type: String

Standard metadata keys for JavaScript

Here are the standard metadata keys for JavaScript:

ADB. va. pl ugi ns. aa. Vi deoMet adat aKeys
SHOW

SEASON,
EPI SODE,
ASSET I D,
GENRE,

FI RST_AlI R_DATE,

FI RST_DI G TAL_DATE,

RATI NG

=1

SITEID

CREATI VE_URL

Video Analytics Implementation Guide 1.5 for
JavaScript

15

ORI Gl NATOR,
NETWORK,

SHOW TYPE,
AD_LOAD,

MVPD,

AUTHORI ZED,
DAY_PART,
FEED,

STREAM FORVAT

b
ADB. va. pl ugi ns. aa. AdMVet adat akeys = {

ADVERTI SER,
CAVPAI GN_I D,
CREATI VE_I D,
PLACEMVENT | D,
SITE_ID,
CREATI VE_URL

Sample implementation on JavaScript

Here is a sample implementation on JavaScript.

To set standard metadata or partner metadata information, the application must use context metadata APIs and set the expected

key-value pair by using one of the following APIs on AdobeAnal yti csPl ugi n:

« set Vi deoMet adat a - for setting video metadata
« set AdMet adat a - for setting ad metadata

To attach custom metadata and standard metadata keys, see the following information:

o Attaching Custom Metadata
o Standard metadata keys for JavaScript

/1 inport Standard Metadata namespace
var Vi deoMet adat aKeys = ADB. va. pl ugi ns. aa. Vi deoMet adat aKeys;
var AdMet adat akeys = ADB. va. pl ugi ns. aa. AdMet adat aKeys;

Il setting Standard Video Metadata
var contextData = {};

cont ext Dat a[Vi deoMet adat akeys. SEASON] = "sanpl e season”;

cont ext Dat a[Vi deoMet adat aKeys. SHON = "sanpl e show';

cont ext Dat a[Vi deoMet adat aKeys. EPI SODE] = "sanpl e epi sode”;

cont ext Dat a[Vi deoMet adat aKeys. ASSET_I D] = "sanpl e asset id";

cont ext Dat a[Vi deoMet adat aKeys. GENRE] = "sanpl e genre";

cont ext Dat a[Vi deoMet adat aKeys. FI RST_AI R_DATE] = "sanple air date";
cont ext Dat a[Vi deoMet adat akeys. FI RST_DI G TAL_DATE] = "sanple digital date";
cont ext Dat a[Vi deoMet adat akeys. RATING = "sanple rating";

cont ext Dat a[Vi deoMet adat aKeys. ORI G NATOR] = "sanpl e originator";
cont ext Dat a[Vi deoMet adat aKeys. NETWORK] = "sanpl e network";

cont ext Dat a[Vi deoMet adat aKeys. SHON TYPE] = "sanpl e show type";
cont ext Dat a[Vi deoMet adat aKeys. AD_LOAD] = "sanpl e ad | oad";

cont ext Dat a[Vi deoMet adat akeys. MPD] = "sanpl e nvpd";

cont ext Dat a[Vi deoMet adat aKeys. AUTHORI ZED] = "true";

cont ext Dat a[Vi deoMet adat aKeys. DAY_PART] = "sanple day part";

cont ext Dat a[Vi deoMet adat aKeys. FEED] = "sanpl e feed";

cont ext Dat a[Vi deoMet adat aKeys. STREAM FORVAT] = "sanple format";

/1 setting Standard Ad Metadata

var contextData = {};

cont ext Dat a[AdMet adat aKeys. ADVERTI SER] = "sanpl e advertiser";
"sanpl e canpai gn";
"sanpl e creative";

cont ext Dat a[AdMet adat aKeys. CAMPAI GNLI D] =
cont ext Dat a[AdMet adat aKeys. CREATI VE_I D] =

cont ext Dat a[AdMet adat aKeys. CREATI VE_URL] = "sanple url";
cont ext Dat a[AdMet adat aKeys. SITE I D] = "sanple site";
cont ext Dat a[AdMet adat aKeys. PLACEMENT | D] = "sanpl e pl acenent";

t hi s. _aaPl ugi n. set AdMet adat a(cont ext Dat a) ;

Tip: The class that implements Video Analytics is Vi deoAnal yt i csProvi der.

Video Analytics Implementation Guide 1.5 for
JavaScript

Configure the Video Heartbeat Library

You can configure each of the video heartbeat library components on an individual basis.

After you Implement VideoPlayerPluginDelegate, you are ready to add the video heartbeat code to your project. Before you
proceed, make sure you have the following:

« An instance of your custom Vi deoPl ayer Pl ugi nDel egat e object.
« A properly configured ADBMbbi | eConfi g. j son file.

For more information, see Configure AppMeasurement.

« Your Marketing Cloud Org ID or Publisher ID (assigned by Adobe).

',/ Note: Existing customers using the Publisher ID can continue using it, but we recommend that you start using your
Marketing Cloud Org ID instead. Contact Adobe Customer Care to obtain a Marketing Cloud Org ID.

On each HTML page where you are tracking video, add a <scr i pt > tag with a reference to Vi deoHeart beat. m n. j s:

<script src="VideoHeartbeat.m n.js"></script>

The following code sample illustrates how to instantiate and configure the video heartbeat components:

/1 Video Player plugin

var vpPl ugi nDel egate = new Cust onVi deoPl ayer Pl ugi nDel egat e(<ny- pl ayer >) ;

var vpPl ugin = new Vi deoPl ayer Pl ugi n(vpPl ugi nDel egat e) ;

var vpPl ugi nConfi g = new Vi deoPl ayer Pl ugi nConfi g();

vpPl ugi nConfi g. debugLogging = true; // set this to false for production apps.
vpPl ugi n. confi gure(vpPl ugi nConfi g);

/'l Adobe Anal ytics plugin

var aaPl ugi nDel egate = new Cust omAdobeAnal yti csPl ugi nDel egat e() ;

var aaPl ugin = new AdobeAnal yti csPl ugi n(appMeasur enent, aaPl ugi nDel egat e) ;
var aaPl ugi nConfig = new AdobeAnal yti csPl ugi nConfi g();

aaPl ugi nConfi g. channel = <syndi cati on-channel >;

aaPl ugi nConfi g. debugLogging = true; // set this to false for production apps.
aaPl ugi n. confi gur e(aaPl ugi nConfi g);

/'l Adobe Heartbeat plugin

var ahPl ugi nDel egat e = new Cust omAdobeHeart beat Pl ugi nDel egat e() ;

var ahPl ugi n = new AdobeHeart beat Pl ugi n(ahPl ugi nDel egat e) ;

var ahPl ugi nConfi g = new AdobeHeart beat Pl ugi nConfi g(<tracki ng-server>, <publisher>);
ahPl ugi nConfi g. ovp = <onl i ne-vi deo- pl at f or m nane>;

ahPl ugi nConfi g. sdk = <pl ayer - SDK- ver si on>;

ahPl ugi nConfi g. debuglLoggi ng = true; // set this to false for production apps.

ahPl ugi nConfig.ssl = false; // set this to true to enable Heartbeat calls through HTTPS
ahPl ugi n. confi gur e(ahPl ugi nConfi g);

/'l Heart beat

var plugins = [vpPlugin, aaPlugin, ahPlugin];

var heart beat Del egat e = new Cust onHeart beat Del egat e() ;

var hearthbeat = new Heartbeat (heartbeat Del egate, plugins);

var heartbeat Config = new Heartbeat Config();

hear t beat Confi g. debugLogging = true; // set this to false for production apps.
heart beat . confi gure(heart beat Confi g);

The configuration of each of the video heartbeat components follows the builder pattern:

o A configuration object is built

« The configuration object is passed as a parameter to the configure method of the component
The list below describes all the configuration parameters:

« VideoPlayerPlugin

Video Analytics Implementation Guide 1.5 for
JavaScript

17

« debugLogging: activates logging inside this plugin. Optional. Default value: false
AdobeAnalyticsPlugin

o channel: the name of the syndication channel. Optional. Default value: the empty string

« debugLogging: activates logging inside this plugin. Optional. Default value: false

AdobeHeartbeatPlugin

« trackingServer: the server to which all the heartbeat calls are sent. Mandatory. Use the value provided by your Adobe
consultant.

« publisher: the name of the publisher. Mandatory. Use the value provided by your Adobe consultant.

« ssl: Indicates whether the heartbeat calls should be made over HTTPS. Optional. Default value: false

« ovp: the name of the online video platform through which content gets distributed. Optional. Default value: "unknown"

« sdk: the version of the video player app/SDK. Optional. Default value: "unknown"

o quietMode: activates the "quiet" mode of operation, in which all output HTTP calls are suppressed. Default value: false

« debugLogging: activates logging inside this plugin. Optional. Default value: false
Heartbeat

« debugLogging: activates logging within the core Heartbeat component. Optional. Default value: false

Note: Setting the debugLoggi ng flag to true on any of the video heartbeat components will activate fairly extensive tracing

messaging which may impact performance. While these messages are useful during development and debugging, you should
set all debugLogging flags to false for the production version of your player app. Note that the debugLoggi ng flags default

to false, so logging is disabled by default.

Test Your Configuration

Before you continue, load your code in a browser to make sure everything loads without errors. Optionally, set the debugLoggi ng

flag to t r ue while you test:

hear t beat Confi g. debugLoggi ng = true; // renove or set to false for production!

Next, open your code in a browser and check the JavaScript console for errors (the code must be running on a local or remote

web server). If there are no errors, you can use the JavaScript console to make a call to t r ackVi deoLoad() and then

trackPl ay() to simulate a video play. If you check the network tab, you'll see a call to your Analytics data collection server,

and additional calls to the Video Heartbeat tracking server.

After you test your configuration, continue to Track Player Events.

Track Player Events

Media players that provide JavaScript event handlers are typically tracked by attaching callback functions to the video player
event handlers.

The next step is to call the video heartbeat track methods when specific events occur in your player. This typically involves

subscribing to events, registering a callback function, and then calling the correct method in the callback. Review the Track

Methods and Player Events sections for details on exactly which method you should call for each corresponding player event.

The following example demonstrates event handling for HTML 5 video:

var nyvideo = docunent. get El enent Byl d(' novie');

nyvi deo. addEvent Li st ener (' pl ay' , trackPl ay, f al se);

Video Analytics Implementation Guide 1.5 for
JavaScript

nyvi deo. addEvent Li st ener (' ended' , trackConpl et e, f al se);
nyvi deo. addEvent Li st ener (' seeked', seekEnd, false);
nyvi deo. addEvent Li st ener (' seeking', seekStart, false);
nyvi deo. addEvent Li st ener (' pause', pause, false);

nyvi deo. addEvent Li st ener (' ended', conplete, false);

function trackPlay() {
var nyvi deo = docunent. get El enent Byl d(' novie');
if (myvideo.currentTine == 0) ({
vpPl ugi n. trackVi deoLoad() ;
vpPl ugi n. trackPl ay();
} else {
vpPl ugi n. trackPl ay();
}
}
function pause(e) {
vpPl ugi n. trackPause();
}
function seekStart(e) {
vpPl ugi n. trackSeekStart();
}
function seekEnd(e) {
vpPl ugi n. trackSeekConpl et e() ;
}
function trackConplete() {
vpPl ugi n. trackConpl et e();
vpPl ugi n. trackVi deoUnl oad() ;

}

The following example demonstrates event handling for a YouTube player:

function onYouTubePl ayer Ready(i d) {
pl ayer = docunent. get El enent Byl d("yt pl ayer");
if (player.addEventListener) ({
pl ayer. addEvent Li st ener (' onSt at eChange', ' handl ePl ayer St at eChange') ;

}

el se {

Video Analytics Implementation Guide 1.5 for 19
JavaScript

pl ayer. attachEvent (' onSt at eChange', ' handl ePl ayer St at eChange') ;

function handl ePl ayer St at eChange (state) {
switch (state) {
case 1:
case 3:
/1 Video has begun playing/ buffering
if (player.getCurrentTime() == 0) {
vpPl ugi n. trackVi deoLoad() ;
vpPl ugi n. trackPl ay() ;
} else {
vpPl ugi n. trackPl ay() ;
}
br eak;
case 2:
vpPl ugi n. trackPause();
case O:
/1 Video has been paused/ ended
vpPl ugi n. trackConpl et e() ;
vpPl ugi n. trackVi deoUnl oad();

br eak;

}

Note that each player provides a different way to listen to events. Use the documentation provided by the player API to determine
how to listen for player events.

Your next step is to Test Your Video Measurement Code

Track Methods and Player Events

Information about the correspondence between player events and the associated call exposed by the public API of the video
heartbeat library.

The video player being instrumented must be capable of triggering a series of events through which any subscriber can be
informed about what happens inside the video player. The following tables present the one-to-one correspondence between
player events and the associated call exposed by the public API of the video heartbeat library.

This section contains the following information:

Video Analytics Implementation Guide 1.5 for 20
JavaScript

o Video Playback

* Rules and Practices
o Ad Playback

o Chapter Tracking
* QoS Tracking

o Error Tracking

Video Playback
Event Method Call Parameter List
Load the main video asset trackVi deoLoad() None
Unload the main video asset trackVi deoUnl oad() None
Autoplay ON, or user clicks play trackSessionStart() None
Playback start trackPl ay() None
Playback stop/pause trackPause() None
Playback complete trackConpl et e() None
Seek start trackSeekStart () None
Seek complete trackSeekConpl et e() None
Buffer start trackBufferStart() None
Buffer complete t rackBuf f er Conpl et e() None

Rules and Practices

» Methods to be called in pairs:

The following methods must be called in pairs (that is, each t rack. . . St art () must have a corresponding
track... Conplete()):

etrackBufferStart() andtrackBuffer Conpl et e()

«trackPause() andtrackPl ay() (note that if the player is closed before the pause resumes, the corresponding method
might not be called)

«trackSeekStart () andtrackSeekConpl et e() (with an exception: there may be multiple t r ackSeekSt art () calls
before at rackSeekConpl et e())

etrackAdStart () andtrackAdConpl et e() (unless the user seeks out of the ad without playing it to completion)

etrackChapterStart () andtrackChapter Conpl et e() (unless the user seeks out of the chapter without playing it to
completion)

Thetrack. .. Start () callisnotrequired to be followedbyat rack. . . Conpl et e() call, as there maybe othert r ack. . . ()
method calls in between. For example, the following sequence of t r ack. . . () method calls is valid and describes a user who
is seeking through the stream while paused, and resumes playback after two seeks:

trackPause(); // Signals that the user paused the pl ayback.

trackSeekStart(); // Signals that the user started a seek operation.

trackSeekStart(); // Signals that the user started another seek operation (before the first
one was conpl eted).

trackSeekConpl ete(); // Signals that the second seek operati on has conpl et ed.

trackPlay(); // Signals that the user resunmed pl ayback.

« Tracking the completion of content:

Video Analytics Implementation Guide 1.5 for 21
JavaScript

The t rackConpl et e() method is used to signal the completion of the video (i.e., the content was played to the end). You
should call t r ackConpl et e() before calling t r ackVi deoUnl oad() if the video was completed. When the user quits the
video before its completion (e.g., by switching to another video in a playlist), you should not call t r ackConpl et e() . Instead,
you should simply close the tracking session by calling t r ackVi deoUnl oad() .

Ad Playback

Event Method Call Parameter List
An ad starts trackAdStart () None

An ad completes trackAdConpl et e() None

ThetrackAdStart () andtrackAdConpl et e() methods are the only track methods required in order to signal the beginning
and completion of an ad.

You do not need to (and should not) call any additional track methods to signal the transition from ad to content or vice-versa.
For instance, you should not signal the pause of the main video (via t r ackPause()) when an ad starts. This is handled
automatically by the Vi deoPl ayer Pl ugi n when you call t rackAdStart ().

Chapter Tracking
Event Method Call Parameter List
A new chapter starts trackChapterStart () None
A chapter completes t rackChapt er Conpl et e() None

QoS Tracking
Event Method Call Parameter List
A switch to another bitrate occurs trackBi t rat eChange() None

Error Tracking

Event Method Call Parameter List

An error occurs at the player level trackVi deoPl ayer Error () String errorld -unique error
identifier

An error occurs at the application level |trackApplicationError() String errorld

Test Your Video Measurement Code
A simple way to test your video heartbeat implementation is to run the code in a demo environment.

1. Load your code in a test environment and use a packet analyzer to verify that Analytics server calls and heartbeat calls are
being sent. You should see an initial call to your data collection server, and then multiple calls to the Video Heartbeat tracking
server.

In the initial call to your Analytics data collection server:
o Verify that pe=ns_s.

2. Test your implementation throughly to make sure you haven't missed any events. For example, if your player provides a
pause event handler and you do not call t r ackPause, your time played metrics will be inflated.

https://marketing.adobe.com/resources/help/en_US/sc/implement/packet_monitor.html

Video Analytics Implementation Guide 1.5 for 22
JavaScript

3. Ina packetanalyzer, inspect the calls and use the Scenarios to make sure events are being sent as expected. For example, you
should see an s: event : t ype of | oad and then st art when the video begins, and conpl et e and then unl oad events
when the video completes.

Page Load Video Start

| Structure [T

RC Mmal Host Path s Info
GET./ democorp.dcl.sc.omtrdc.net /b/ss/democorp e) plete 2x2
democorp.dcl.sc.omirdc.net B/ss/democorpscdocdev/1/)5- 1m plete 2x2
B2 GEThearibeatsomudener |/2_job ld=sc vasieventype=loadteventc.. | 174 ms 1.32 kb (Complets | |
2. heartbeats.omtrdc.net /?__job_id=s¢_va&s:eventtype=start&l:event.c... 162 ms 1.32 KB Complete
2... GET heartbeats.omtrdc.net /?_job_id=sc_va&s:event:type=active&i:event.... 80 ms 1.33 KB Complete
2... GET heartbeats.omtrdc.net /?_job_id=sc_va&s:event:type=play&l:event:co... 140 ms 1.33 KB Complete
2... GET heartbeats.omtrdc.net /?_job_id=sc_va&s:event:type=active&l:event.... 56 ms 1.34 KB Complete
2... GET heartbeats.omtrdc.net /?_job_id=sc_va&s:event:type=play&l:event:co... 67 ms 1.34 KB Complete
2... GET heartbeats.omtrdc.net /?_job_id=sc_va&s:event:type=active&l:event.... 566 ms 1.34 KB Complete
2... GET heartbeats.omtrde.net /7_job_id=sc_va&s:event:type=play&l:event:co... 530 ms 1.34 KB Complete
2... GET heartbeats.omtrde.net /7_job_id=sc_va&s:event:type=complete&i:ev... 268 ms 1.33 KB Complete
2... GET heartbeats.omtrde.net /7_job_id=sc_va&s:event:type=play&l:event:co... 311 ms 1.34 KB Complete
2. |GET heartbeats.omtrdc.net /7 _job Id=sc va&s:eventtype=unload&levent... 266 ms 1.32 KB Complete
Filter: democorp filter using your Analytics rsid || Focussed | Settings |

|0verview Response Summary = Chart | Notes |

Event type - use the video timeline topic to compare
heartbeat video events with player events

1
l-event:duration 0
l:event:total_duration 0
I:eventplayhead 0
l:event:ts 1415656408137
h:event:year 2014
h:event:month 11
h:event:day 10
h:event:hour 21
h:eventminute 53
h:event:second 20
l:event:prev_ts -1
SACEAT VAR il

| Headers !M@ Raw |

Video Measurement Parameters

List of data-collection parameters sent by video heartbeat.
This section contains the following information:

o Video Core Parameters

o Video Ad Parameters

« Video Chapter Parameters

o Video Quality Parameters

e Other Parameters

Video Core Parameters

Label Required? | Variable Type | Context Data Variable Clickstream/API Sent With
Variable Name

Video Name No classification a. medi a. fri endl yNanme N/A Video Start

Video Length | Yes classification | a. media.length N/A Video Start

Content Yes eVar a. medi a. nane video Video Start

Video Analytics Implementation Guide 1.5 for

JavaScript

Label Required? | Variable Type | Context Data Variable Clickstream/API Sent With

Variable Name

Content Yes eVar a. nmedi a. segnent videosegment Heartbeat
Segment

Content Type |Yes eVar a. cont ent Type videocontenttype Video Start
Content Player |Yes eVar a. medi a. pl ayer Nane videoplayername Video Start
Name

Content No eVar a. medi a. channel videochannel Video Start
Channel

Video Initiates | Yes event a. nedi a. vi ew videostart Video Start
Content Starts | No event a. nedi a. pl ay videoplay Heartbeat
Content No event a. nedi a. conpl et e videocomplete Heartbeat
Completes

Content Yes event a. nedi a. segnent Vi ew videosegmentviews Heartbeat
Segment Views

Content Time | Yes event a. nedi a.ti mePl ayed videotime Heartbeat
Spent

Video Time Yes event a. medi a. total Ti nePl ayed |videototaltime Heartbeat
Spent

10% Progress | No event a. nedi a. progressl10 videoprogress10 Heartbeat
Marker

25% Progress | No event a. nedi a. progress25 videoprogress25 Heartbeat
Marker

50% Progress | No event a. medi a. progr ess50 videoprogress50 Heartbeat
Marker

75% Progress | No event a. medi a. progress75 videoprogress75 Heartbeat
Marker

95% Progress | No event a. medi a. progr ess95 videoprogress95 Heartbeat
Marker

Average Minute | No event a. nedi a. aver ageM nut eAudi ence | videoaverageminuteaudience | Heartbeat
Audience

Video Path Yes prop a. nedi a. nane videopath Video Start
Paused No event a. nedi a. pause videopause Heartbeat
Impacted

Streams

Pause Events | No event a. medi a. pauseCount videopausecount Heartbeat

Video Analytics Implementation Guide 1.5 for 24

JavaScript

Label Required? | Variable Type | Context Data Variable Clickstream/API Sent With
Variable Name

Total Pause No event a. nedi a. pauseTi ne videopausetime Heartbeat

Duration

Content No event a. nedi a. resune videoresume Heartbeat

Resumes

Video Ad Parameters

Label Required? | Variable Type | Context Data Variable Clickstream/API Sent With
Variable Name

Ad Name No classification | a. medi a. ad. fri endl yNane |N/A Ad Start

Ad Length Yes classification |a. medi a. ad. | ength N/A Ad Start

Ad Yes eVar a. nedi a. ad. narme videoad Ad Start

Pod Name No classification | a. medi a. ad. podFri endl yName | N/A Ad Start

Pod Position | Yes classification | a. nedi a. ad. podSecond N/A Ad Start

Ad Pod Yes eVar a. nedi a. ad. pod videoadpod Ad Start

Ad in Pod Yes eVar a. nedi a. ad. podPosi ti on videoadinpod Ad Start

Position

Ad Player Yes eVar a. medi a. ad. pl ayer Nare videoplayername Ad Start

Name

Ad Starts Yes event a. medi a. ad. vi ew videostart Ad Start

Ad Completes |Yes event a. medi a. ad. conpl et e videocomplete Heartbeat

Ad Time Spent | Yes event a. nedi a. ad. ti nePl ayed videoadtime Heartbeat

Video Chapter Parameters

Label Required? | Variable Type |Context Data Variable Clickstream/API Sent With
Variable Name

Chapter Name | No classification |a. nedi a. chapter. fri endl yNarme | N/A Heartbeat

Chapter Yes classification |a. nmedi a. chapter.position |N/A Heartbeat

Position

Chapter Offset | No classification | a. medi a. chapt er . of f set N/A Heartbeat

Chapter No classification |a. medi a. chapter.|ength N/A Heartbeat

Length

Chapter Yes eVar a. nedi a. chapt er. nane videochapter Heartbeat

Chapter Starts | Yes event a. medi a. chapter. vi ew videochapterstart Heartbeat

Video Analytics Implementation Guide 1.5 for

JavaScript

Label Required? | Variable Type |Context Data Variable Clickstream/API Sent With
Variable Name

Chapter No event a. medi a. chapt er. conpl et e |videochaptercomplete Heartbeat

Completes

Chapter Time | Yes event a. medi a. chapt er. ti mePl ayed | videochaptertime Heartbeat

Spent

Video Quality Parameters

Label Required? | Variable Type |Context Data Variable Clickstream/API Sent With
Variable Name
Time to Start | No eVar a. medi a. qoe. ti meToSt ar t videoqoetimetostartevar | Heartbeat
event videoqoetimetostart
Buffer Events | No eVar a. nedi a. qoe. buf f er Count videoqoebuffercountevar | Heartbeat
event videoqoebuffercount
Total Buffer | No eVar a. nmedi a. qoe. buf fer Ti me videoqoebuffertimeevar | Heartbeat
Duration
event videoqoebuffertime
Bitrate No eVar a. medi a. goe. bi t r at eChangeGount | videoqoebitratechangecountevar | Heartbeat
Changes
& event videoqoebitratechangecount
Average No eVar a nedi a. goe. bi trat eAver ageBucket | videoqoebitrateaverageevar | Heartbeat
Bitrate
Errors / Error | No eVar a. medi a. qoe. err or Count videoqoeerrorcountevar | Heartbeat
Events .
event videoqoeerrorcount
Dropped No eVar a. medi a. qoe. dr oppedFr ameCount | videogoedroppedframecountevar | Heartbeat
Frames
event videoqoedroppedframecount
Drops before | No event a. medi a. qoe. dr opBef oreSt art | videoqoedropbeforestart | Heartbeat
Start
Buffer No event a. medi a. qoe. buffer videoqoebuffer Heartbeat
Impacted
Streams
Bitrate No event a. medi a. qoe. bi tr at eChange |videoqoebitratechange | Heartbeat
Change
Impacted
Streams
Average No event a. nedi a. qoe. bi tr at eAver age | videoqoebitrateaverage | Heartbeat

Bitrate

Video Analytics Implementation Guide 1.5 for 26
JavaScript

Label Required? | Variable Type |Context Data Variable Clickstream/API Sent With
Variable Name

Error No event a. nedi a. qoe. error videoqoeerror Heartbeat

Impacted

Streams

Dropped No event a. medi a. qoe. dr oppedFr anes | videoqoedroppedframes | Heartbeat

Frame

Impacted

Streams

Other Parameters

Label Required? |Variable Type | Context Data Variable Clickstream/API Sent With
Variable Name

SDK Version | No N/A* a. medi a. sdkVer si on N/A Heartbeat

VHL Version | No N/A* a. medi a. vhl Ver si on N/A Heartbeat

Stalling No N/A* a. medi a. qoe. stal | N/A Heartbeat

Impacted

Streams

Stalling No N/A* a. nedi a. qoe. st al | Count N/A Heartbeat

Events

Total Stalling | No N/A* a. medi a. qoe. stal | Ti me N/A Heartbeat

Duration

* You must create your own processing rule if you want to use this parameter.

Sample player

Debugging
You can enable or disable logging for Medi aHear t beat .

Enable Debug Logging
You can enable or disable logging for each video heartbeat component.

The video heartbeat library provides an extensive tracing/logging mechanism that is put in place throughout the entire
video-tracking stack. You can enable or disable this logging for each video heartbeat component by setting the debugLoggi ng

flag on the configuration object.

The log messages follow this format:

Format: [<tinmestanp>] [<level>] [<tag>] [<nessage>]
Exanpl e: [16: 01: 48 GMI+0200. 848] [| NFQ

Video Analytics Implementation Guide 1.5 for 27
JavaScript

[com adobe. pri neti ne. va. pl ugi ns. vi deopl ayer: : Vi deoPl ayer Pl ugi n] \
Data from del egate > Chapterlnfo: nane=First chapter, |ength=15, position=1, startTi ne=0

There are several sections delimited by pairs of square brackets as follows:

o timestamp: This is the current CPU time (time-zoned for GMT)

« level: There are 4 message levels defined:

« INFO - Usually the input data from the application (validate player name, video ID, etc.)
« DEBUG - Debug logs, used by the developers to debug more complex issues
« WARN - Indicates potential integration/configuration errors or Heartbeats SDK bugs

« ERROR - Indicates important integration errors or Heartbeats SDK bugs

« tag: The name of the sub-component that issued the log message (usually the class name)

« message: The actual trace message

You can use the logs output by the video heartbeat library to verify the implementation. A good strategy is to search through
the logs for the string #t r ack. This will highlight all the t rack. . . () APIs called by your application.

For instance, this is what the logs filtered for #t r ack could look like:

[17:47: 48 GMr+0200 (EET).942] [INFQ [plugin::player] #trackVi deoLoad()
[17:47: 48 GVI+0200 (EET).945] [INFQ [plugin::player] #trackPl ay()
[17:47: 48 GVr+0200 (EET).945] [INFQ [plugin::player] #trackPl ay() > Tracki ng session auto-start.
[17:47: 48 GVIT+0200 (EET).945] [INFQ [plugin::player] #trackSessionStart()
[17:47: 49 GVIr+0200 (EET).446] [INFQ [plugin::player] #trackChapterStart()
[17:47: 49 GUI+0200 (EET).446] [INFQ [plugin::player] #trackChapterConplete()
[17:48: 10 GMr+0200 (EET).771] [INFQ [plugin::player] #trackConplete()
[I'N

|
I
I
[17:48: 10 Gvir+0200 (EET).774] [INFQ [plugin::player] #trackVi deoUnl oad()

Using this validation method, you can easily spot implementation issues (e.g., the integration code never calls
t rackAdConpl et e() when an ad completes playback).

Validate implementations

To validate your Media Heartbeat implementation it will be required to use a HI'TP Proxy tool to view the HTTP / HTTPS
traffic between the Application and Heartbeats/Adobe Analytics.

HTTP calls for video analytics tracking will be sent to 2 different tracking servers:

» Adobe Analytics: Adobe Analytics hits are used to mark the initiate of a Video/Ad/Chapter. Tracking server example:
<vi si t or namespace>. sc. ont rdc. net

The different parameters related to video tracking for the Adobe Analytics HTTP calls are described in Adobe Analytics
parameters.

o Heartbeats platform: Heartbeat platform hits (also known as heartbeats) are sent throughout the video tracking session at 10
seconds intervals (out of band events might be sent outside of the 10 seconds cycle). Tracking server example:
<vi si t or namespace>. hb. ont rdc. net

The different parameters related to video tracking for the Adobe Analytics HTTP calls are described in Heartbeats parameters.

Adobe Debug

Optionally, you can debug payloads (Heartbeat and Adobe Analytics) going out of Video Heartbeat Library using Adobe Debug
tool which is a freely available tool from Adobe for Video Heartbeat customers.

To use Adobe Debug, you need to contact your Adobe representative for the initial setup and registration. After you gain access
to Adobe Debug, go to Adobe Debug help to see the help information.

https://debug.adobe.com/login?next=/#/help/

Video Analytics Implementation Guide 1.5 for
JavaScript

28

Heartbeats parameters

Name

All Events
s:event:type

l:event:prev_ts

l:event:ts

l:event:duration

l:event:playhead

s:event:sid

l:asset:duration /
l:asset:length

s:asset:publisher

s:asset:video_id

s:asset:type

Required/Optional | Data Source

Heartbeat SDK

Heartbeat SDK

Heartbeat SDK

Heartbeat SDK

Videolnfo object

Heartbeat SDK

Videolnfo object

AdobeHeartbeatPluginConfig

object

Videolnfo object

Heartbeat SDK

Description

The type of the
event being tracked.

The timestamp of
the last event

of the same type in
this session. The
value is -1 if this is
the first event of this
type in this video
session.

The timestamp of
the event.

The playhead is
inside the currently
active asset (main or
ad), when the event
was recorded

Randomly generated
string, the session
id. All events in a
certain session
(video + ads) should
be the same

Video asset length
of the main asset.

Publisher of the
asset

ID uniquely
identifying the video
in the publisher's
catalog

Asset type (main or
ad).

Video Analytics Implementation Guide 1.5 for

29

Name

s:stream:type

s:user:id

s:user:aid

s:user:mid

s:cuser:customer_user_ids_x

l:aam:loc_hint

s:aam:blob

s:scarsid

s:sc:itracking server

h:sc:ssl

S:sp:ovp

Required/Optional | Data Source

R

Videolnfo object

Config object for
mobile, app
mesurement
VisitorID

Marketing Cloud Org

AdobeAnalyticsPlugin

AdobeAnalyticsPlugin

AdobeAnalyticsPlugin

Report Suit ID (or
ids)

AdobeHeartbeatPluginConfig

object

object

object

Description

The stream type.
Can be one of the
following: live, vod,
linear.

User's specifically
set visitor id

The user's analytics
visitor id value.

The user's
marketing cloud
visitor id value.

All customer user
ids set on Audience
Manager

AAM data sent on
each payload after
aa_start

AAM data sent on
each payload after
aa_start

SiteCatalyst RSID
where reports
should be sent

SiteCatalyst tracking
server

Whether the traffic
is over HTTPS (if
set to 1) or over
HTTP (is set to 0).

"primetime" for
Primetime players,
the actual OVP for
other players

Video Analytics Implementation Guide 1.5 for

JavaScript

30

Error Events

s:asset:type=ad Events

Name

s:sp:sdk

s:sp:player_name

s:sp:channel

s:sp:hb_version

l:stream:bitrate

s:event:source

s:event:id

s:asset:ad_id

s:asset:ad_sid

s:asset:pod_id

Required/Optional | Data Source

R

AdobeHeartbeatPluginConfig

object

Videolnfo object

object

Heartbeat SDK

QosInfo object

Heartbeat SDK

s:event:id

AdInfo object
Heartbeat SDK

Heartbeat SDK

Description

OVP version string

Video player name
(the actual player
software, used to
identify the player)

The channel where
the user is watching
the content. For a
mobile app, the app
name. For a website,
the domain name.

The version number
of the
VideoHeartbeat
library issuing the
call.

The current value of
the stream bitrate
(in bps)

The source of the
error, either
player-internal, or
the
application-level.

Error id, uniquely
identifies the error

Pod id inside the
video. This value is
computed
automatically based
on the following
formula:
MD5(video_id) +

"+ index of the
pod.

Video Analytics Implementation Guide 1.5 for
JavaScript

31

Name Required/Optional | Data Source

s:asset:pod_position R

s:asset:resolver R

ssmeta:custom_ad_metadata.x 0

Chapter Events s:stream:chapter_sid R

s:stream:chapter_name (0]

s:stream:chapter_id

l:stream:chapter_pos

l:stream:chapter_offset R

AdBreakInfo object

AdBreakInfo object

Heartbeat SDK

ChapterInfo object

Heartbeat SDK

ChapterInfo object

ChapterInfo object

Description

Index of the ad
inside the pod (first
ad has index 0,
second ad index 1
etc.)

Custom ad metadata

Unique identifier
associated to the
playback instance of
the chapter. Note: a
chapter can be
played multiple
times due to
seek-back
operations
performed by the
user.

The chapter's
friendly (i.e. human
readable) name.

The unique ID of
the chapter. This
value is computed
automatically based
on the following
formula:
MD5(video_id) +

"on

_" + chapter_pos.

The chapter's index
in the list of
chapters (starting
with 1).

The chapter's offset
inside main content,
excluding ads.
(expressed in
seconds)

Video Analytics Implementation Guide 1.5 for

JavaScript

32

Name

Required/Optional | Data Source

l:stream:chapter_length R

smeta:custom_chapter_metadatax | O

Adobe Analytics parameters

Events

Content

Ad

Name

pe

pe3

cid.customer_user_ids_x

c.a.contentType

c.a.media.channel

c.a.media.playerName

c.a.media.vsid

c.a.media.view

c.a.media.name

c.customer_video_metadata

c.customer_chapter_metadata

pe

pe3

cid.customer_user_ids_x

c.a.contentType

Heartbeat Mapping
Parameter

sicusercustomer_user_ids x

s:asset:type

s:sp:channel

s:sp:player_name

s:event:sid

s:asset:video_id

smebadabasomer vido maadia

smeadiasoe depler meadia

sicusercustomer_user_ids x

s:asset:type

ChapterInfo object

Required/optional

Description

The chapter's
duration (expressed
in seconds)

Custom chapter
metadata

Value Range

video

TRUE

msa_s

videoAd

Video Analytics Implementation Guide 1.5 for 33
JavaScript

Events Name Heartbeat Mapping | Required/optional Value Range
Parameter
c.a.media.channel s:sp:channel
c.a.media.playerName s:sp:player_name
c.a.media.vsid s:event:sid R
c.a.media.view R TRUE
c.a.media.name s:asset:video_id R
c.a.ad.media.name s:asset:ad_id R

c.a.ad.media.playerName

c.a.ad.media.pod s:asset:pod_id

c.a.ad.media.podPosition .
s:asset:position

c.a.ad.media.view TRUE

c.customer_video_metadata | syeaddaasome vido metadia | O

c.customer_ad_metadata smetditnsomer ad metadia | O

Ratings Partners Integration

(Note: Certified Metrics description including certification, contract, etc included in “home page”)

Parter Documentation

Nielsen Digital Content Ratings powered by Adobe
comScore Certified Metrics powered by Adobe
Scenarios

This topic provides a scenario to illustrate when video data is collected.

Scenario and Timeline Illlustrations

This topic describes a scenario to illustrate when video data is collected and contains illustrations to show the video and actions
timelines.

This section contains the following information:

https://marketing-stage.adobe.com/resources/help/en_US/hbvideo/nielsen_updated/
https://marketing-stage.adobe.com/resources/help/en_US/hbvideo/comscore/

Video Analytics Implementation Guide 1.5 for
JavaScript

34

e Scenario Overview
o Video Timeline

o Actions Timeline

Scenario Overview

A video (VOD) is loaded and played into a web page or application that has the following components:

Component Details

Playback content . o
Main content of 80 seconds split in two chapters.

o Chapter 1 - chapter duration: 40 seconds
« Chapter 2 - chapter duration: 40 seconds

Three ad breaks:

« One pre-roll before first chapter that contains two ads:

e« AD 1 - ad duration: 20 seconds
¢ AD 2 - ad duration: 15 seconds

« One mid-roll between chapters that contains one ad:

o AD 3 - ad duration: 10 seconds

« One post-roll at the end of the content that contains one ad:

e AD 4 - ad duration: 15 seconds

User interactions « Start the content after it is loaded.

« Skip back 15 seconds of content inside Chapter 1 at second 35.
« Pause the main content for 45 seconds during Chapter 2.
Playback events « Buffering on start for 15 seconds.
« Player error occurs during Chapter 1 at second 37.
o Re-buffering for 15 seconds during Chapter 2 at second 60.
« Bitrate changed during Chapter 2 at second 75.

Video Analytics Implementation Guide 1.5 for 35
JavaScript

Video Timeline
Ad Break (Pre-Roll) Ad Break (Mid-Roll) Ad Break (Post-Roll)
AD 1 AD 2 AD 3 AD 4
20 35 a7 45 60 75
A A N [
J 0 e ———— _: E 40 T 'Ti i 80
I | i | |
I I eep 1! I | I :
Buffe . Error Buffer Bitrate ;
. : Change !
Chapter 1 Chapter 2
-+ > < >
Actions Timeline

Error 5 | Bitrate Change '5]

@D OO CD-O-O-OP

OED-@D - -0 GO-CHO @B
' Buffer ' Chapter 1 Chapter 2 ' v
Tracking Explained

This topic describes when video data is collected and contains information about the actions a user takes along with video
heartbeat Library methods used, Analytics and video heartbeat library calls made, and implementation details.

See Scenario and Timeline Illustrations to view illustrations depicting the processes explained below.

The scenario illustrated in the following table is a typical end-to-end playback where there is little interaction and content is
played to the end.

Video Analytics Implementation Guide 1.5 for 36
JavaScript

Note: Vi deoPl ayer Pl ugi nDel egat e must provide the most up-to-date information it has when queried: Vi deol nf o
(including pl ayhead), AdBr eakl nf o, Adl nf o, Chapt er | nf o, and QoSI nf o.

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

1 0 0 Actions:

Auto-play or Play button pressed

Video Heartbeat Library:
trackVi deoLoad

trackSessi onSt art

Analytics Tracking Calls:
SC Video Start Call

Video Heartbeat Tracking Calls:
HB start event

HB AA start event

Implementation Details:

« Start the tracking library internal session by calling t r ackVi deoLoad
« Set Vi deol nf o before any tracking method is called
« Start tracking the startup time by calling t r ackSessi onSt art method

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

2 10 0 Actions:

N/A

Video Heartbeat Library:
N/A

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB start event

Video Analytics Implementation Guide 1.5 for

JavaScript

37

Action # Actions
Timeline
(seconds)

Action # Actions
Timeline
(seconds)

3 15

Main Content
Timeline
(seconds)

Main Content
Timeline
(seconds)

Implementation Details:

This call is sent because the app takes longer than 10 seconds to start the
stream (long buffering scenario).

Actions:

Ad start (AD1)

Video Heartbeat Library:
trackAdSt art

trackPl ay

Analytics Tracking Calls:
SC Ad Start Call

Video Heartbeat Tracking Calls:
HB start event

HB ad start event

HB AA ad start event

HB play event

Implementation Details:

« Set AdBr eakl nf o before the t r ackAdSt art method is called for the
first ad on the current ad break (pre-roll).

« Set AdBr eakl nf 0. posi ti on to 1 because the first ad break is inside
the current main content.

« Set AdBr eakl nf o. st art Ti ne to 0. The st ar t Ti e is the offset in the
main content (in seconds) where the ad break starts. This can also be
seen as the value of the playhead when the ad break is reached.

« Set Adl nf o for AD 1 before the t r ackAdSt art method is called.

« Set Adl nf 0. posi ti on to 1 for AD 1 because the first ad is inside the
current ad break.

Video Analytics Implementation Guide 1.5 for 38
JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
4 25 0 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB ad play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
5 35 0 Actions:

Ad complete (AD1)

Ad start (AD2)

Video Heartbeat Library:
trackAdConpl et e

trackAdSt art

Analytics Tracking Calls:
SC Ad Start Call

Video Heartbeat Tracking Calls:

HB ad play event
HB ad complete event
HB ad start event

HB AA ad start event

Video Analytics Implementation Guide 1.5 for

JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
Implementation Details:
« Set AdI nf o to NULL for AD 1 after the t r ackAdConpl et e method is
called.
« Set Adl nf o for AD 2 before the t r ackAdSt art method is called.
« Set AdI nf 0. posi ti on to 2 for AD 2 because the second ad is inside
current ad break.
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
6 45 0 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB ad play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
7 50 0 Actions:

Ad complete (AD2)

Video Heartbeat Library:
trackAdConpl et e

trackChapterStart

Analytics Tracking Calls:

Video Analytics Implementation Guide 1.5 for 40
JavaScript

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

N/A

Video Heartbeat Tracking Calls:
HB ad play event

HB ad complete event

HB chapter start event

HB play event

Implementation Details:

« Set Adl nf 0 to NULL for AD 2 after the t r ackAdConpl et e method is
called.

« Set AdBr eakl! nf o to Null for the current ad break (pre-roll) after the
t rackAdConpl et e method is called.

« Set Chapt er | nf o for Chapter 1 before thet r ackChapt er St ar t method
is called.

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

8 60 10 Actions:

N/A

Video Heartbeat Library:
N/A

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Video Analytics Implementation Guide 1.5 for 41
JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
9 70 20 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
10 80 30 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Video Analytics Implementation Guide 1.5 for 42
JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
11 85 35 Actions:
Seek Back 15"
Video Heartbeat Library:
trackSeekSt art
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
12 85 20 Actions:
N/A
Video Heartbeat Library:

trackSeekConpl et e

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

Make sure Vi deoPl ayer Pl ugi nDel egat e will report the new pl ayhead

(20) after t r ackSeekConpl et e is called.

Video Analytics Implementation Guide 1.5 for
JavaScript

43

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

13 95 30

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)

14 102 37

Actions:

N/A

Video Heartbeat Library:
N/A

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Actions:

Player error occurred

Video Heartbeat Library:

trackError

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB error event

Implementation Details:

« Set error type and message on t r ackEr r or method.

Video Analytics Implementation Guide 1.5 for

JavaScript

44

Action #

15

Action #

16

Actions
Timeline
(seconds)

105

Actions
Timeline
(seconds)

115

Main Content
Timeline
(seconds)

40

Main Content
Timeline
(seconds)

40

Actions:

Ad start (AD3)

Video Heartbeat Library:
trackChapt er Conpl et e

trackAdSt art

Analytics Tracking Calls:
SC Ad Start Call

Video Heartbeat Tracking Calls:

HB play event
HB chapter complete event
HB ad start event

HB AA ad start event

Implementation Details:

o Set Chapt er | nf o to NULL for Chapter 1 after the
t rackChapt er Conpl et e method is called.

« Set AdBr eak| nf o before the t r ackAdSt art method is called for the
first ad on the current ad break (mid-roll).

« Set AdBr eak| nf 0. posi ti on to 2 because the second ad break is inside

the current main content.

« Set AdBr eakl nf o. st art Ti me to 40. The st ar t Ti ne is the offset in

the main content (in seconds) where the ad break starts. This can also
be seen as the value of the playhead when the ad break is reached.

« set Adl nf o for AD 3 before the t r ackAdSt art method is called.

« Set Adl nf 0. posi ti on to 1 for AD 3 because the first ad is inside the

current ad break.

Actions:

Ad complete (AD3)

Video Analytics Implementation Guide 1.5 for

JavaScript

45

Action #

Action #

17

Actions
Timeline

(seconds)

Actions
Timeline
(seconds)

120

Main Content

Timeline
(seconds)

Main Content
Timeline
(seconds)

45

Video Heartbeat Library:
trackAdConpl et e

trackChapterStart

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:
HB ad play event

HB ad complete event

HB chapter start event

HB play event

Implementation Details:

« Set Adl nf 0 to NULL for AD 3 after the t r ackAdConpl et e method is

called.

« Set AdBr eak! nf o to Null for the current ad break (mid-roll) after the
t r ackAdConpl et e method is called.

« Set Chapt er | nf o for Chapter 2 before thet r ackChapt er St ar t method

is called.

Actions:

Pause button is pressed

Video Heartbeat Library:

t rackPause

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB play event

Video Analytics Implementation Guide 1.5 for 46
JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
HB pause event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
18 135 45 Actions:
Play button is pressed after 15"
Video Heartbeat Library:
trackPl ay
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
19 145 55 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

Video Analytics Implementation Guide 1.5 for 47
JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
HB play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
20 150 60 Actions:
Buffer start event occurred
Video Heartbeat Library:
trackBufferStart
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB play event
HB buffer event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
21 160 60 Actions:
N/A
Video Heartbeat Library:
N/A
Analytics Tracking Calls:

N/A

Video Analytics Implementation Guide 1.5 for

JavaScript

48

Action # Actions
Timeline
(seconds)

Action # Actions
Timeline
(seconds)

22 165

Action # Actions
Timeline
(seconds)

23 175

Main Content
Timeline
(seconds)

Main Content
Timeline
(seconds)

60

Main Content
Timeline
(seconds)

70

Video Heartbeat Tracking Calls:

HB buffer event

Implementation Details:

N/A

Actions:

Buffer end event occurred after 15"

Video Heartbeat Library:

trackBuf f er Conpl et e

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:
HB buffer event

HB play event

Implementation Details:

N/A

Actions:

N/A

Video Heartbeat Library:
N A

Analytics Tracking Calls:
N/A

Video Analytics Implementation Guide 1.5 for

JavaScript
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
Video Heartbeat Tracking Calls:
HB play event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
24 180 75 Actions:
Bitrate change occurred
Video Heartbeat Library:
trackBitrat eChange
Analytics Tracking Calls:
N/A
Video Heartbeat Tracking Calls:
HB bitrate change event
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
25 185 80 Actions:
Ad start (AD4)
Video Heartbeat Library:

trackChapt er Conpl ete

trackAdSt art

Analytics Tracking Calls:
SC Ad Start Call

Video Analytics Implementation Guide 1.5 for

JavaScript

50

Action #

Action #

26

Actions
Timeline
(seconds)

Actions
Timeline
(seconds)

195

Main Content
Timeline
(seconds)

Main Content
Timeline
(seconds)

80

Video Heartbeat Tracking Calls:
HB play event

HB chapter complete event

HB ad start event

HB AA ad start event

Implementation Details:

« Set Chapt er I nf o to NULL for Chapter 2 after the
t rackChapt er Conpl et e method is called.

« Set AdBr eak! nf o before the t r ackAdSt art method is called for the
first ad on the current ad break (post-roll).

« Set AdBr eakl! nf 0. posi ti on to 3 because the third ad break is inside
the current main content.

« Set AdBr eakl nf o. st art Ti me to 80. The st ar t Ti ne is the offset in
the main content (in seconds) where the ad break starts. This can also
be seen as the value of the playhead when the ad break is reached.

« Set Adl nf o for AD 4 before the t r ackAdSt art method is called.

« Set Adl nf 0. posi ti on to 1for AD 4 because the first ad is inside current
ad break.

Actions:

N/A

Video Heartbeat Library:
N/A

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:

HB play event

Video Analytics Implementation Guide 1.5 for 51
JavaScript

Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
Implementation Details:
N/A
Action # Actions Main Content
Timeline Timeline
(seconds) (seconds)
27 200 80 Actions:

Ad complete (AD4)

Video Heartbeat Library:
trackAdConpl et e
trackConpl ete

t rackUnl oad

Analytics Tracking Calls:
N/A

Video Heartbeat Tracking Calls:
HB play event
HB ad complete event

HB complete event

Implementation Details:

« Set Adl nf 0 to NULL for AD 4 after the t r ackAdConpl et e method is
called.

« Set AdBr eak! nf o to Null for the current ad break (post-roll) after the
t rackAdConpl et e method is called.

« Close the main content by calling t r ackConpl et e.
« Close the tracking library internal session by calling t r ackUnl oad.

o Destroy the heartbeat library instance calling the dest r oy method.

Non-Linear Tracking Scenarios

This topic describes when video data is collected in non-linear scenarios and contains information about the actions a user takes
along with video heartbeat Library methods used, Analytics and video heartbeat library calls made, and implementation details.

Video Analytics Implementation Guide 1.5 for 52
JavaScript

The scenario illustrated in Tracking Explained is a typical end-to-end playback where there is little interaction and content is
played to the end.

The following table illustrates tracking scenarios where the user seeks around more or drops from the stream.

Use Case Scenario Video Heartbeat Library Implementation Details
Skip to next video o playlist of videos, no ads, |«trackVi deoLoad You can reuse one VHL instance
no chapters «trackSessi onStart (optional) but make sure to call
«trackPl ay trackV deolnl oad/t r ackM deolLoad

. and update the player delegate
User clicks Next. vi deol nf o between the two clips.

e«trackVi deoUnl oad

etrackVi deoLoad

Chapter seek « one video content «trackVi deoLoad When the user starts seeking, wait
« 3 chapters «trackSessi onStart (optional) | until it completes then call
« seek from chapter 1 to «tracktrackChapt er St art t rackChapt er St ar t with the new
chapter 3 chapter info. You should NOT call

User seeks forward. t rackChapt er Conpl et e on the

otrackSeekSt art source chapter, because it was not
«trackSeekConpl et e seen through the end.
etracktrackChapterStart

o t rackt rackChapt er Conpl et e

etrackConpl ete

o trackVi deoUnl oad

edestroy

Pause tracking

The Pause tracking support was added on VHL 1.6. At the same time, the buffer and pause behaviors were unified to have the
same way of tracking and same metrics. VHL will send a new pause Video Heartbeat event at each 10 seconds during pause and
will stop after 30 minutes, at this point the session will be closed. If the playback is resumed after 30 minutes of pause, VHL will
automatically create a new tracking session and send a resume event.

For the implementation that are not passing to VHL all information about the player state, a new artificial tracking event was
build called "stall" to define a state of the player that VHL does not know about. One simple example is when the player is in
buffer mode, the playhead has same value during that period but the VHL was not informed due to the fact that the player is
not exposing the event or just because the buffer event was not properly instrumented. The stalling event is tracked in the same
way as paused.

Pause duration less than 30 minutes

In this scenario, complete the following tasks:

1. Start playback for a content that is 10 minutes long.

Video Analytics Implementation Guide 1.5 for
JavaScript

53

2. Pause the playback after 3 minutes.

3. Resume the content after 20 minutes and play the content until the end.

Playback Time 0 3
fon ot 23 25 a0
> [(n LA I
J | I I |
Playhead O 3 3 5 10
HE Start HE Complete
HE Play HB Pausa HB Play
e pd------- >

Video Initiate

Expected events

« An Analytics vi deo i ni ti at e event after the session starts.

«Avideo heartbeats start event after the session starts.

Video Complata

«video heartbeats play events every 10 seconds until the session is paused.

«video heartbeats pause events every 10 seconds while the session is paused.

« video heartbeats play events every 10 seconds after pause;
« Avideo heartbeats conpl et e event when the playback is complete.

« A conpl ete vi deo call sent to Analytics when a session has ended.
Add pause metrics to analytics: has paused and number of pauses.

Expected metrics

« 1 content start and 10 minutes of total time spent.

« All video solution events + has pause event, 1 pause event count.
Abandon during pause

In this scenario, complete the following tasks:

1. Start playback for a content that is 10 minutes long.
2. Pause the playback after 3 minutes;

3. Close the content after 10 minutes.

Playback Time

0_. -
f/'b \: !IKI '\ 113
| [I
Playhead 0 3 3
HB Start
HB Play HB Pause
--pdq--------- >

Video Initiate

Video Close

Video Analytics Implementation Guide 1.5 for
JavaScript

54

Expected results

o An Analytics vi deo i ni ti at e event when the session starts.

« A video heartbeats st art event when the session starts.

« video heartbeats pl ay events every 10 seconds until the session is paused.
« video heartbeats pause events every 10 seconds during the pause.

o Acl ose video call sent to Analytics when a session has ended.

Add pause metrics to analytics: has paused and number of pauses.

Pause duration more than 30 minutes

In this scenario, complete the following tasks:

1. start playback for a content that is 10 minutes long.
2. pause the playback after 3 minutes.
3. resume the content after 40 minutes and play the content to the end.

s

Plinytbck Tine 0 3
s ¥ 2 a @ 80
Playhead 0 3 3 - . |]
HB Start HB 5 HEB Comglete
HB Flay_ HEB Fause HE Play
B e T T B q=temmn- S
Videa Initune Wanen Clena Vigeo inuate 2 Cor
Expected events

« An Analytics vi deo i ni ti at e event after the session starts.

« A video heartbeats st art event when the session starts.

o Video heartbeats pl ay events every 10 seconds until the content is paused.

« Video heartbeats pause events every 10 seconds during pause for 30 minutes.

« Acl ose video call sent to Analytics once a session has ended.

Add pause metrics to analytics: has paused and number of pauses.

« No video heartbeats event for 10 minutes until playback resumes.

o An Analytics vi deo i ni ti at e event after a new tracking session starts after the playback resumes (including a new SID).

« A video heartbeats st art event after the session starts (playback resumes).
« A video heartbeats r esune event after the session starts (playback resumes).
« Video heartbeats pl ay events every 10 seconds.

o A video heartbeats conpl et e event after the playback is complete.

o A conpl ete video call sent to Analytics after a session has ended.

Add resume metric to analytics: has resume.

Expected metrics

« 1 content starts and 3 minutes of total time spent.
« All video solution events + has pause event, and 1 pause event count.
« 1 content starts and 7 minutes of total time spent.

« All video solution events + has resume event.

Video Analytics Implementation Guide 1.5 for 55
JavaScript

Contact and Legal Information
Information to help you contact Adobe and to understand the legal issues concerning your use of this product and documentation.

Help & Technical Support

The Adobe Experience Cloud Customer Care team is here to assist you and provides a number of mechanisms by which they
can be engaged:

o Check the Marketing Cloud help pages for advice, tips, and FAQs
o Ask us a quick question on Twitter @ AdobeExpCare

o Log an incident in our customer portal

« Contact the Customer Care team directly

o Check availability and status of Marketing Cloud Solutions

Service, Capability & Billing

Dependent on your solution configuration, some options described in this documentation might not be available to you. As

each account is unique, please refer to your contract for pricing, due dates, terms, and conditions. If you would like to add to
or otherwise change your service level, or if you have questions regarding your current service, please contact your Account

Manager.

Feedback

We welcome any suggestions or feedback regarding this solution. Enhancement ideas and suggestions can be added to our
Customer Idea Exchange.

Legal

© 2017 Adobe Systems Incorporated. All Rights Reserved.
Published by Adobe Systems Incorporated.

Terms of Use | Privacy Center

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. A trademark symbol (®, ™ etc.) denotes an Adobe trademark.

All third-party trademarks are the property of their respective owners. Updated Information/Additional Third Party Code
Information available at http://www.adobe.com/go/thirdparty.

http://helpx.adobe.com/marketing-cloud.html
https://twitter.com/AdobeExpCare
https://customers.omniture.com/login.php
http://helpx.adobe.com/marketing-cloud/contact-support.html
http://status.adobe.com/
https://my.omniture.com/login/?r=%2Fp%2Fsuite%2Fcurrent%2Findex.html%3Fa%3DIdeasExchange.Redirect%26redirectreason%3Dnotregistered%26referer%3Dhttp%253A%252F%252Fideas.omniture.com%252Ft5%252FAdobe-Idea-Exchange-for-Omniture%252Fidb-p%252FIdeaExchange3
https://my.omniture.com/login/?r=%2Fp%2Fsuite%2Fcurrent%2Findex.html%3Fa%3DIdeasExchange.Redirect%26redirectreason%3Dnotregistered%26referer%3Dhttp%253A%252F%252Fideas.omniture.com%252Ft5%252FAdobe-Idea-Exchange-for-Omniture%252Fidb-p%252FIdeaExchange3
https://marketing.adobe.com/resources/help/en_US/terms.html
http://www.adobe.com/privacy/policy.html
http://www.adobe.com/products/eula/third_party/

	Contents
	Video Analytics Implementation Guide 1.5 for JavaScript
	Getting started on JavaScript
	Download the SDK
	Implement the JavaScript library

	Implementation Guide
	Configure AppMeasurement
	How the JavaScript VideoPlayerPluginDelegate Works
	Implement VideoPlayerPluginDelegate - JS
	Attaching Custom Metadata
	Standard Metadata Parameters
	Standard metadata keys for JavaScript
	Sample implementation on JavaScript
	Configure the Video Heartbeat Library
	Track Player Events
	Track Methods and Player Events
	Test Your Video Measurement Code

	Video Measurement Parameters
	Sample player
	Debugging
	Enable Debug Logging
	Validate implementations
	Adobe Debug
	Heartbeats parameters
	Adobe Analytics parameters

	Ratings Partners Integration
	Scenarios
	Scenario and Timeline Illustrations
	Tracking Explained
	Non-Linear Tracking Scenarios
	Pause tracking
	Pause duration less than 30 minutes
	Abandon during pause
	Pause duration more than 30 minutes

	Contact and Legal Information

