
Adobe® Marketing Cloud

Video Analytics Implementation Guide 1.5.x for
iOS

Contents

Video Analytics Implementation Guide 1.5 for iOS...4
Getting started on iOS...4

Download the SDK..4

Implement the iOS library..5

Implementation Guide..6

Configure AdobeMobileLibrary...6

How the iOS VideoPlayerPluginDelegate Works...7

Implement VideoPlayerPluginDelegate...9

Attaching Custom Metadata..12

Standard Metadata Parameters...13

Standard metadata keys for iOS..15

Sample implementation on iOS..16

Configure the Video Heartbeat Library...17

Track Player Events...19

Track Methods and Player Events...19

Test Your Video Measurement Code...21

Video Measurement Parameters...22

Sample player...26

Debugging...26

Enable Debug Logging...26

Validate implementations...26

Adobe Debug...27

Heartbeats parameters...27

Adobe Analytics parameters..31

Ratings Partners Integration...33

Scenarios..33

Scenario and Timeline Illustrations..33

Tracking Explained...35

Non-Linear Tracking Scenarios..51

Pause tracking..51

Video Analytics Implementation Guide 1.5.x for iOSLast updated 5/9/2017

Contact and Legal Information..54

Video Analytics Implementation Guide 1.5.x for iOSLast updated 5/9/2017

Contents

Video Analytics Implementation Guide 1.5 for iOS
This section contains instructions to download the video heartbeat SDKs and developer guides for your platform. Make sure
you also download the developer guide that is in the docs folder when you download the SDK as it contains the specific
implementation instructions for video heartbeat.

ProcessPlatform

Video heartbeat for iOS requires that you first implement the Marketing Cloud SDK in your app. For
details, see iOS SDK 4.x for Marketing Cloud Solutions.

iOS

After your Analytics implementation is configured using the Marketing Cloud SDK, visit the Adobe
Github Video Heartbeat site to download the SDK and the developer guide.

Getting started on iOS

Before you can use Video Heartbeat 1.5x and 1.6.x in iOS you must complete a few tasks.

Setting up the Marketing Cloud account

To set up the Marketing Cloud account, contact an Adobe representative. After the Marketing Cloud account is set for video
analytics, you must enable the Visitor ID service to use Video Heartbeat.

Prerequisites to implementing

Before you start implementing Video Heartbeat for ActionScript in the next section, ensure that you have completed the following
tasks:

• Valid implementation for ADBMobile for Android in your application.

For more information about the Adobe Mobile SDK documentation, see Android SDK 4.x for Marketing Cloud Solutions.

• Visitor ID service should be implemented.

For more information about the Visitor ID service, see Marketing Cloud ID Service.

• Valid configuration parameters for Video Heartbeat.

These parameters can be obtained from an Adobe representative after you set up the video analytics account.

• This guide is intended for a media integration engineer who has an understanding of the APIs and workflow of the media
player being instrumented. Implementing these APIs requires that your media player provide the following:

• An API to subscribe to player events.

The media heartbeat requires that you call a set of simple APIs when events occur in your player.

• An API or class that provides player information, such as the media name and play head position.

Download the SDK

The video heartbeat library is distributed using a public Github repository.

1. Browse to Adobe Github Video Heartbeat and download the latest release for your platform.
2. Extract the zip, and copy the video heartbeat library to a location accessible to your project.
3. Save the samples folder to a location where the sample project can be reviewed and tested.

4Video Analytics Implementation Guide 1.5 for iOS

https://marketing.adobe.com/resources/help/en_US/mobile/ios/
https://github.com/Adobe-Marketing-Cloud/video-heartbeat/releases
https://github.com/Adobe-Marketing-Cloud/video-heartbeat/releases
https://marketing.adobe.com/resources/help/en_US/mobile/android/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://github.com/Adobe-Marketing-Cloud/video-heartbeat/releases

Your next step is to Configure AdobeMobileLibrary.

Implement the iOS library

After you download the ActionScript SDK and add it to your project, you can collect video metrics, such as initiates, content
starts, ad starts, ad completes, content completes and so on.

Get the iOS SDK

Before you get the SDK, you must set up a mobile SDK and download the Video Heartbeat SDK. For more information, see
Getting started on iOS.

1. Expand the VideoHeartbeatLibrary-android-v2.*.zip file that you downloaded.

For more information about downloading this file, see Getting started on iOS.

2. Verify that the VideoHeartbeat.jar file exists in the libs directory:

This library is used with Android devices and simulators for video heartbeat tracking APIs.

Add the SDK to your project

To add the SDK to your IntelliJ IDEA project:

1. Right click your project in the Project navigation panel.
2. Select Open Module Settings.
3. Under Project Settings, select Libraries.
4. Click + to add a new library.
5. Select Java and navigate to the VideoHeartbeat.jar file.
6. Select the modules where you plan to use the mobile library.
7. Click Apply and then OK to close the Module Settings window.

To add the SDK to your Eclipse project:

1. In the Eclipse IDE, right-click on the project name.
2. Click Build Path > Add External Archives.
3. Select VideoHeartbeat.jar.
4. Click Open.
5. Right-click the project again, and click Build Path > Configure Build Path.
6. Click the Order and Export tabs.
7. Ensure that the VideoHeartbeat.jar file is selected.

Adding app permissions

The VideoHeartbeat Library requires the following permissions to send data in tracking calls:

• INTERNET
• ACCESS_NETWORK_STATE

To add these permissions, add the following lines to your AndroidManifest.xml file in the application project directory:

• <uses-permission android:name="android.permission.INTERNET" />
• <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

5Video Analytics Implementation Guide 1.5 for iOS

Implementation Guide

This guide describes how to add video heartbeat measurement to any video player that provides an Objective-C API.

This section was last updated 06/18/2015.

Implementing video heartbeat requires that your video player provides an Objective-C API with the following:

• An API to subscribe to player events. The video heartbeat SDK requires that you call a set of simple functions as actions occur
in your player.

• An API or class that provides player information, such as video name and playhead location. The video heartbeat SDK requires
that you implement an interface that returns current video information.

Requirements

Integrating video heartbeat requires the following:

• Existing Analytics implementation.

These instructions assume that you have an existing implementation of AppMeasurement that is also using the Marketing
Cloud Visitor ID Service. On iOS these two components are bundled together in the AdobeMobileLibrary. To implement
Analytics or the Marketing Cloud Visitor ID Service, see Adobe Analytics Implementation Guide and the Marketing Cloud
Visitor ID Service Guide to get started.

• VideoHeartbeat library. Download instructions are in the next section of this guide.

Note: Make sure your Analytics implementation is configured to send data to a development report suite before you start
development.

Example Implementations
An example is available in the samples folder that is included with the video heartbeat library.

Implementation Process

Complete the following steps to add video heartbeat tracking to your player:

Configure AdobeMobileLibrary

Information to help you configure the AdobeMobileLibrary.

AdobeMobileLibrary bundles the AppMeasurement library and Marketing Cloud visitor ID service components for mobile
applications. The video heartbeat library uses these components to send calls to Adobe Analytics. The standard Analytics
Variables are all available.

You must configure the AdobeMobileLibrary, using the JSON file described below.

Configure the AdobeMobileLibrary in the JSON config file included with your Adobe Mobile SDK. The following sample
config file includes settings that you must obtain from your Adobe representative. These settings include the RSID,
tracking-server URL, and Marketing Cloud visitor ID:

ADBMobileConfig.json:
{

 "version" : "1.0",

 "analytics" : {

6Video Analytics Implementation Guide 1.5 for iOS

https://marketing.adobe.com/resources/help/en_US/sc/implement/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://marketing.adobe.com/resources/help/en_US/mcvid/
https://marketing.adobe.com/resources/help/en_US/sc/implement/sc_variables.html
https://marketing.adobe.com/resources/help/en_US/sc/implement/sc_variables.html

 "rsids" : "<rsid>",

 "server" : "<tracking-server>",

 "charset" : "UTF-8",

 "ssl" : false,

 "offlineEnabled" : false,

 "lifecycleTimeout" : 30,

 "batchLimit" : 50,

 "privacyDefault" : "optedin",

 "poi" : []

 },

 "marketingCloud": {

 "org": "<marketing-cloud-org-id>"

 },

 "target" : {

 "clientCode" : "amsdk",

 "timeout" : 5

 },

 "audienceManager" : {

 "server" : ""

 }

}

Your next step is to Implement VideoPlayerPluginDelegate.

How the iOS VideoPlayerPluginDelegate Works

Examples to understand the interaction between the player event listeners, the track functions, and the
VideoPlayerPluginDelegate on iOS.

Note: This video player plugin delegate was previously named PlayerDelegate in version 1.4.

If you have reviewed Track Methods and Player Events, you might have noticed that none of the track methods take any
parameters. Instead of passing video name, playhead information, and chapter information directly to these methods, video
heartbeat uses a VideoPlayerPluginDelegate class (ADB_VHB_VideoPlayerPluginDelegate on iOS) that is queried
for this information instead. As part of your implementation, you are required to extend this class to provide specific information
about your player.

To understand the interaction between the player event listeners, the track functions, and the VideoPlayerPluginDelegate,
consider the following examples:

VideoPlayerPlugin Track Functions

7Video Analytics Implementation Guide 1.5 for iOS

In the trackVideoPlay function you assigned to handle the play event, you would call [videoPlayerPlugin trackPlay]
to let video heartbeat know that playback has started:
- (void)trackVideoPlay
{
 [videoPlayerPlugin trackPlay];
}

Note that no video information is passed to the trackPlay.

VideoPlayerPluginDelegate

When the video heartbeat track... methods are called, your implementation of VideoPlayerPluginDelegate is queried
automatically as needed to provide any required details about the video, ad, or chapter. This removes the need for you to
determine exactly what information is needed by each track function, you can provide a single object that returns the most
current information available. The following is a simple example:

sample VideoPlayerPluginDelegate.h

@class VideoPlayer;

@interface SampleVideoPlayerPluginDelegate : ADB_VHB_VideoPlayerPluginDelegate
- (instancetype)initWithPlayer:(VideoPlayer *)player NS_DESIGNATED_INITIALIZER;
@end

sample VideoPlayerPluginDelegate.m

@interface SampleVideoPlayerPluginDelegate ()
@property(strong, nonatomic) VideoPlayer *player;
@end

@implementation SampleVideoPlayerPluginDelegate
- (instancetype)initWithPlayer:(VideoPlayer *)player {
 self = [super init];
 if (self) {
 _player = player;
 }
 return self;
}
- (ADB_VHB_VideoInfo *)getVideoInfo {
 ADB_VHB_VideoInfo *videoInfo = [[ADB_VHB_VideoInfo alloc] init];
 videoInfo.id = self.player.videoId; // e.g. “vid123-a”
 videoInfo.name = self.player.videoName; // e.g. “My sample video”
 videoInfo.length = self.player.videoLength; // e.g. 240 seconds
 videoInfo.streamType = ADB_VHB_AssetType.ASSET_TYPE_VOD;
 videoInfo.playerName = self.player.name; // e.g. “Sample video player”
 videoInfo.playhead = self.player.currentPlayhead; // e.g. 115
 return videoInfo;
}
- (ADB_VHB_AdBreakInfo *)getAdBreakInfo {
 return nil; // no ads in this scenario
}
- (ADB_VHB_AdInfo *)getAdInfo {
 return nil; // no ads in this scenario
}
- (ADB_VHB_ChapterInfo *)getChapterInfo {
 return nil; // no chapters in this scenario
}
- (ADB_VHB_QoSInfo *)getQoSInfo {
 return nil; // no QoS information in this sample
}
@end

8Video Analytics Implementation Guide 1.5 for iOS

Note: The onError callback that was part of the PlayerDelegate in version 1.4 is removed from the
ADB_VHB_VideoPlayerPluginDelegate in version 1.5.

In this example, when [videoPlayerPlugin trackPlay] is called, your instance of VideoInfo is read to determine the
current offset of the video to calculate time played. The querying happens automatically, you are required only to extend
ADB_VHB_VideoPlayerPluginDelegate and provide an instance of the extended class as a parameter to
ADB_VHB_VideoPlayerPlugin when you initialize video heartbeat.

Make sure you take a close look at the sample players to see how ADB_VHB_VideoPlayerPluginDelegate is extended.

Implement VideoPlayerPluginDelegate

The VideoPlayerPluginDelegate is used by the video heartbeat library to get information about the currently playing video, ad,
and chapter.

Note: This video player plugin delegate was previously named PlayerDelegate in version 1.4.

The VideoPlayerPluginDelegate interface is where you will typically spend the majority of your implementation time.

To get started creating your own VideoPlayerPluginDelegate implementation, instantiate an
ADB_VHB_VideoPlayerPluginDelegate object:
ADB_VHB_VideoPlayerPluginDelegate *vpPluginDelegate =

 [[CustomVideoPlayerPluginDelegate alloc] initWithPlayer:<my-player>];

Next, you need to define the functions that return information about your video and player:
@interface ADB_VHB_VideoPlayerPluginDelegate : NSObject

- (ADB_VHB_VideoInfo *) getVideoInfo;

- (ADB_VHB_AdBreakInfo *) getAdBreakInfo;

- (ADB_VHB_AdInfo *) getAdInfo;

- (ADB_VHB_ChapterInfo *) getChapterInfo;

- (ADB_VHB_QoSInfo *) getQoSInfo;

@end

With that framework in place, the following sections explain how to update these methods to return useful data from your
player:

• Video Information
• Ad Break Information
• Ad Information
• Chapter Information
• Example

Video Information

The getVideoInfo method returns an ADB_VHB_VideoInfo object that contains details about the video player and the
currently playing video. Before you can define this object, you'll need to use the API documentation provided by your player to
find out how video information is retrieved.

9Video Analytics Implementation Guide 1.5 for iOS

To implement your custom getVideoInfo method, you'll need the following information:

DescriptionRequired?Parameter

The name of the video player that is playing back the main content.YesplayerName

The ID of the video asset.Yesid

The name of the video asset (opaque string value.)Noname

The duration (in seconds) of the video asset. If streamType is set to vod, return
the length of the video. For other video types, return -1 as the length.

Yeslength

The current playhead location (in seconds) inside the video asset (excluding ad
content) at the moment this method was called.

Yesplayhead

The type of the video asset.YesstreamType

Set to YES if this is a resumed video playback session (for example, when playback
of VOD content starts from where the user previously left it).

Noresumed

After you have figured out how to get the required information, update your getVideoInfo method to return an
ADB_VHB_VideoInfo object with the video information. How you populate each value is up to you, and varies based on your
player.

Ad Break Information

Ad breaks provide insight as to when a particular ad was displayed. For example, if you have a pre-roll and a midpoint ad break,
you can collect position data along with the specific ad data. If you have only one ad break, you can simply provide 1 for the
position and leave the name blank.

DescriptionRequired?Parameter

The name of the video player responsible with playing back the current advertisement
break.

YesplayerName

The name of the ad-break.Noname

The position (index) of the pod inside the main content (starting with 1).Yesposition

The offset of the ad-break inside the main content (in seconds). Defaults to the
playhead inside the main content at the moment of the trackAdStart call.

NostartTime

Ad Information

Ad information is retrieved using a similar process used to retrieve video information, except you return an ADB_VHB_AdInfo
object instead with details about the currently playing video ad. Use the API documentation provided by your Ad vendor to
determine the following:

DescriptionRequired?Parameter

The ID of the ad asset.Yesid

The duration (in seconds) of the ad asset.Yeslength

The position (index) of the ad inside the parent ad-break (starting with 1).Yesposition

The name of the ad asset (opaque string value).Noname

10Video Analytics Implementation Guide 1.5 for iOS

After you have figured out how to get the required information, update the getAdInfo method to return an ADB_VHB_AdInfo
object with the ad information.

Chapter Information

If you are tracking chapters, you'll need to coordinate the chapter information returned with each call you make to
trackChapterStart. Since chapters are likely defined by you and not your video player, you'll need a way to retrieve chapter
definitions to populate this object.

DescriptionRequired?Parameter

The name of the chapter (opaque string value).Noname

The duration (in seconds) of the chapter.Yeslength

The position of the chapter inside the main content (starting from 1).Yesposition

The offset inside the main content where the chapter starts.YesstartTime

Update the getChapterInfo method to retrieve properties or call the required APIs.

Example

The following is a sample video player plugin delegate:

sample VideoPlayerPluginDelegate.h

@class VideoPlayer;

@interface SampleVideoPlayerPluginDelegate : ADB_VHB_VideoPlayerPluginDelegate

- (instancetype)initWithPlayer:(VideoPlayer *)player NS_DESIGNATED_INITIALIZER;

@end

sample VideoPlayerPluginDelegate.m

@interface SampleVideoPlayerPluginDelegate ()

@property(strong, nonatomic) VideoPlayer *player;

@end

11Video Analytics Implementation Guide 1.5 for iOS

@implementation SampleVideoPlayerPluginDelegate

- (instancetype)initWithPlayer:(VideoPlayer *)player {

 self = [super init];

 if (self) {

 _player = player;

 }

 return self;

}

- (ADB_VHB_VideoInfo *)getVideoInfo {

 ADB_VHB_VideoInfo *videoInfo = [[ADB_VHB_VideoInfo alloc] init];

 videoInfo.id = self.player.videoId; // e.g. “vid123-a”

 videoInfo.name = self.player.videoName; // e.g. “My sample video”

 videoInfo.length = self.player.videoLength; // e.g. 240 seconds

 videoInfo.streamType = ADB_VHB_AssetType.ASSET_TYPE_VOD;

 videoInfo.playerName = self.player.name; // e.g. “Sample video player”

 videoInfo.playhead = self.player.currentPlayhead; // e.g. 115

 return videoInfo;

}

- (ADB_VHB_AdBreakInfo *)getAdBreakInfo {

 return nil; // no ads in this scenario

}

- (ADB_VHB_AdInfo *)getAdInfo {

 return nil; // no ads in this scenario

}

- (ADB_VHB_ChapterInfo *)getChapterInfo {

 return nil; // no chapters in this scenario

}

- (ADB_VHB_QoSInfo *)getQoSInfo {

 return nil; // no QoS information in this sample

}

@end

Your next step is: Attaching Custom Metadata.

Attaching Custom Metadata

You can attach your own metadata to calls made to Adobe Analytics.

12Video Analytics Implementation Guide 1.5 for iOS

The video heartbeat library provides support for custom metadata to be attached to the analytics calls. The relevant APIs for
this functionality are defined on the AdobeAnalyticsPlugin:
@property(nonatomic, copy) NSDictionary *videoMetadata;
@property(nonatomic, copy) NSDictionary *adMetadata;
@property(nonatomic, copy) NSDictionary *chapterMetadata;

The integration code may call these methods on the AdobeAnalyticsPlugin to set custom metadata for the video, the ad,
and/or the chapter. Note that the metadata for the video will automatically be associated with the ads and chapters as well.

You need to set the metadata prior to calling the relevant track...() method on the VideoPlayerPlugin, as follows:

• Set the video metadata before calling trackVideoLoad()
• Set the ad metadata before calling trackAdStart()
• Set the chapter metadata before calling trackChapterStart()

This will ensure that the metadata is taken into consideration by the video heartbeat library when processing the track...()
call.

The code snippet below illustrates how to set custom metadata for video, ads and chapters:
// Before calling trackVideoLoad:
NSMutableDictionary *videoMetadata = [[NSMutableDictionary alloc] init];
[videoMetadata setObject:@"false" forKey:@"isUserLoggedIn"];
[videoMetadata setObject:@"Sample TV station" forKey:@"tvStation"];
[videoMetadata setObject:@"Sample programmer" forKey:@"programmer"];
_analyticsPlugin.videoMetadata = [videoMetadata dictionary];

// [...]

// Before calling trackAdStart:
NSMutableDictionary *adMetadata = [[NSMutableDictionary alloc] init];
[adMetadata setObject:@"Sample affiliate" forKey:@"affiliate"];
[adMetadata setObject:@"campaign" forKey:@"campaign"];
_analyticsPlugin.adMetadata = [adMetadata dictionary];
// [...]

// Before calling trackChapterStart:
NSMutableDictionary *chapterMetadata = [[NSMutableDictionary alloc] init];
[chapterMetadata setObject:@"Sample segment type" forKey:@"segmentType"];
_analyticsPlugin.chapterMetadata = [chapterMetadata dictionary];

Note: Clearing the custom metadata - The custom metadata set on the AdobeAnalyticsPlugin is persistent. It is not
reset automatically by the video heartbeat library. To clear the custom metadata, you can pass nil as the input argument
for each of the set...Metadata() methods. For example, you should do this for ads and chapters once they are complete.
Otherwise, the custom metadata will be applied to subsequent ads / chapters. It is your responsibility to ensure that the
appropriate metadata is set before the trackVideoLoad() / trackAdStart() / trackChapterStart() call.

Your next step is to Configure the Video Heartbeat Library.

Standard Metadata Parameters

List of data-collection parameters sent by video heartbeat.

Important: This feature is valid only on Mobile and JavaScript platforms.

This section contains the following:

• Video metadata
• Ad metadata

13Video Analytics Implementation Guide 1.5 for iOS

Video metadata

Metadata key nameDescriptionContext data keyName

SHOW
Data type: String

a.media.showShow

SEASON
Data type: String

a.media.seasonSeason

EPISODE
Data type: String

a.media.episodeEpisode

ASSET_ID
This is the TMS_ID, an industry
standard ID to identify a piece of

a.media.assetAsset ID

TV/video content. TMS = Tribune
Media Service, which is now known
as Gracenote.

Data type: String

GENRE
Data type: String

a.media.genreGenre

FIRST_AIR_DATE
Original TV air date of the asset.

a.media.airDateFirst air date

Data type: String

FIRST_DIGITAL_DATA
First date when this video asset was
available on Digital.

a.media.digitalDateFirst Digital Date

Data type: String

RATING
Data type: String

a.media.ratingContent Rating

ORIGINATOR
Data type: String

a.media.originatorOriginator

NETWORK
Data type: String

a.media.networkNetwork

SHOW_TYPE
Data type: String

a.media.typeShow type

AD_LOAD
Data type: String

a.media.adLoadAd Loads

MVPD
Data type: String

a.media.pass.mvpdMVPD

AUTHORIZED
Data type: String

a.media.pass.authAuthorized

DAY_PART
Data type: String

a.media.dayPartDay Part

FEED
This determines the type of feed. For
example, for living programming, the
feed types are East HD or West HD.

a.media.feedFeed Type

14Video Analytics Implementation Guide 1.5 for iOS

Metadata key nameDescriptionContext data keyName

Data type: String

STREAM_FORMAT
Clip Classification. If the content is a
full episode, pass a value of 1;

a.media.formatStream Format

otherwise pass a value of 0. The
default value is 0.

Data type: String

Ad metadata

Metadata key nameDescriptionContext data keyProperty name

ADVERTISER
The company or brand whose product
is featured in the ad.

a.media.ad.advertiserAdvertiser

Data Type: String

CAMPAIGN_ID
Client paramaters.

a.media.ad.campaignCampaign ID

Data Type: String

CREATIVE_ID
Client paramaters.

a.media.ad.creativeCreative ID

Data Type: String

PLACEMENT_ID
Client paramaters.

a.media.ad.placementPlacement ID

Data Type: String

SITE_ID
Client paramaters.

a.media.ad.siteSite ID

Data Type: String

CREATIVE_URL
The URL of the creative or ad that is
being delivered.

a.media.ad.creativeURLCreative URL

Data Type: String

Standard metadata keys for iOS

Here are the standard metadata keys for iOS:

Class: ADB_VHB_ StandardMetadataKeys.h

The following constant strings define the standard metadata keys for video:

• FOUNDATION_EXPORT NSString *const ADBVideoMetadataSHOW;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataSEASON;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyASSET_ID;

15Video Analytics Implementation Guide 1.5 for iOS

• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyGENRE;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyFIRST_AIR_DATE;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyFIRST_DIGITAL_DATE;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyRATING;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyORIGINATOR;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyNETWORK;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeySHOW_TYPE;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyAD_LOAD;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyMVPD;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyAUTHORIZED;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyDAY_PART;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeyFEED;
• FOUNDATION_EXPORT NSString *const ADBVideoMetadataKeySTREAM_FORMAT;

The following constant strings define standard metadata keys for ads:

• FOUNDATION_EXPORT NSString *const ADBAdMetadataADVERTISER;
• FOUNDATION_EXPORT NSString *const ADBAdMetadataCAMPAIGN_ID;
• FOUNDATION_EXPORT NSString *const ADBAdMetadataKeyCREATIVE_ID;
• FOUNDATION_EXPORT NSString *const ADBAdMetadataKeyPLACEMENT_ID;
• FOUNDATION_EXPORT NSString *const ADBAdMetadataKeySITE_ID;
• FOUNDATION_EXPORT NSString *const ADBAdMetadataKeyCREATIVE_URL;

Sample implementation on iOS

Here is a sample implementation on iOS.

To set standard metadata or partner metadata information, the application must use context metadata APIs and set the expected
key-value pair by using one of the following APIs on AdobeAnalyticsPlugin:

• setVideoMetadata - for setting video metadata
• setAdMetadata - for setting ad metadata

To attach custom metadata and standard metadata keys, see the following information:

• Attaching Custom Metadata
• Standard metadata keys for iOS

Tip: The class that implements Video Analytics is VideoAnalyticsProvider.

#import "ADBStandardMetadataKeys.h"

NSMutableDictionary *standardVideoMetadata = [[NSMutableDictionary alloc] init];

[standardVideoMetadata setObject:@"Sample Show" forKey:ADBVideoMetadataKeySHOW];

[standardVideoMetadata setObject:@"Sample Season" forKey:ADBVideoMetadataKeySEASON];

[standardVideoMetadata setObject:@"Sample Episode" forKey:ADBVideoMetadataKeyEPISODE];

[standardVideoMetadata setObject:@"Sample Asset Id" forKey:ADBVideoMetadataKeyASSET_ID];

[standardVideoMetadata setObject:@"Sample Genre" forKey:ADBVideoMetadataKeyGENRE];

16Video Analytics Implementation Guide 1.5 for iOS

[standardVideoMetadata setObject:@"Sample Air Date" forKey:ADBVideoMetadataKeyFIRST_AIR_DATE];

[standardVideoMetadata setObject:@"Sample Digital Date"
forKey:ADBVideoMetadataKeyFIRST_DIGITAL_DATE];

[standardVideoMetadata setObject:@"Sample Rating" forKey:ADBVideoMetadataKeyRATING];

[standardVideoMetadata setObject:@"Sample Originator" forKey:ADBVideoMetadataKeyORIGINATOR];

[standardVideoMetadata setObject:@"Sample ShowType" forKey:ADBVideoMetadataKeySHOW_TYPE];

[standardVideoMetadata setObject:@"Sample Ad Load" forKey:ADBVideoMetadataKeyAD_LOAD];

[standardVideoMetadata setObject:@"Sample MVPD" forKey:ADBVideoMetadataKeyMVPD];

[standardVideoMetadata setObject:@"Sample Authorized" forKey:ADBVideoMetadataKeyAUTHORIZED];

[standardVideoMetadata setObject:@"Sample Network" forKey:ADBVideoMetadataKeyNETWORK];

[standardVideoMetadata setObject:@"Sample Day Part" forKey:ADBVideoMetadataKeyDAY_PART];

[standardVideoMetadata setObject:@"Sample Feed" forKey:ADBVideoMetadataKeyFEED];

[standardVideoMetadata setObject:@"Sample Stream format"
forKey:ADBVideoMetadataKeySTREAM_FORMAT];

[_analyticsPlugin setVideoMetadata:standardVideoMetadata];

// Setting standard metadata for Ad

NSMutableDictionary *standardAdMetadata = [[NSMutableDictionary alloc] init];

[standardAdMetadata setObject:@"Sample Advertiser" forKey:ADBAdMetadataKeyADVERTISER];

[standardAdMetadata setObject:@"Sample Campaign" forKey:ADBAdMetadataKeyCAMPAIGN_ID];

[standardAdMetadata setObject:@"Sample Creative Id" forKey:ADBAdMetadataKeyCREATIVE_ID];

[standardAdMetadata setObject:@"Sample Creative URL" forKey:ADBAdMetadataKeyCREATIVE_URL];

[standardAdMetadata setObject:@"Sample Placement ID" forKey:ADBAdMetadataKeyPLACEMENT_ID];

[standardAdMetadata setObject:@"Sample Site Id" forKey:ADBAdMetadataKeySITE_ID];

[_analyticsPlugin setAdMetadata:standardAdMetadata];

Configure the Video Heartbeat Library

You can configure each of the video heartbeat library components on an individual basis.

After you Implement VideoPlayerPluginDelegate, and optionally attach any of your own custom metadata, you are ready to add
the video heartbeat code to your project. Before you proceed, make sure you have the following:

• An instance of your custom VideoPlayerPluginDelegate object.

• A properly configured ADBMobileConfig.json file.

For more information, see Configure AdobeMobileLibrary.

• Your Marketing Cloud Org ID or Publisher ID (assigned by Adobe).

Note: Existing customers using the Publisher ID can continue using it, but we recommend that you start using your
Marketing Cloud Org ID instead. Contact Adobe Customer Care to obtain a Marketing Cloud Org ID.

17Video Analytics Implementation Guide 1.5 for iOS

The following code sample illustrates how to instantiate and configure the video heartbeat components:
// Video Player plugin
ADB_VHB_VideoPlayerPluginDelegate *vpPluginDelegate = [[CustomVideoPlayerPluginDelegate alloc]
 initWithPlayer:<my-player>];
ADB_VHB_VideoPlayerPlugin *vpPlugin = [[ADB_VHB_VideoPlayerPlugin alloc]
initWithDelegate:vpPluginDelegate];
ADB_VHB_VideoPlayerPluginConfig *vpPluginConfig = [[ADB_VHB_VideoPlayerPluginConfig alloc]
init];
vpPluginConfig.debugLogging = YES; // set this to NO for production apps.
[vpPlugin configure:vpPluginConfig];

// Adobe Analytics plugin
ADB_VHB_AdobeAnalyticsPluginDelegate *aaPluginDelegate = [[CustomAdobeAnalyticsPluginDelegate
 alloc] init];
ADB_VHB_AdobeAnalyticsPlugin *aaPlugin = [[ADB_VHB_AdobeAnalyticsPlugin alloc]
initWithDelegate:aaPluginDelegate];
ADB_VHB_AdobeAnalyticsPluginConfig *aaPluginConfig = [[ADB_VHB_AdobeAnalyticsPluginConfig alloc]
 init];
aaPluginConfig.channel = <syndication-channel>;
aaPluginConfig.debugLogging = YES; // set this to NO for production apps.
[aaPlugin configure:aaPluginConfig];

// Adobe Heartbeat plugin
ADB_VHB_AdobeHeartbeatPluginDelegate *ahPluginDelegate = [[CustomAdobeHeartbeatPluginDelegate
 alloc] init];
ADB_VHB_AdobeHeartbeatPlugin *ahPlugin = [[ADB_VHB_AdobeHeartbeatPlugin alloc]
initWithDelegate:ahPluginDelegate];
ADB_VHB_AdobeHeartbeatPluginConfig *ahPluginConfig = [[ADB_VHB_AdobeHeartbeatPluginConfig alloc]
 initWithTrackingServer:<tracking-server> publisher:<publisher>];
ahPluginConfig.ovp = <online-video-platform-name>;
ahPluginConfig.sdk = <player-SDK-version>;
ahPluginConfig.debugLogging = YES; // set this to NO for production apps.
ahPluginConfig.ssl = NO; // set this to YES to enable Heartbeat calls through HTTPS
[ahPlugin configure:ahPluginConfig];

//Heartbeat
NSArray *plugins = @[vpPlugin, aaPlugin, ahPlugin];
ADB_VHB_HeartbeatDelegate *heartbeatDelegate = [[CustomHeartbeatDelegate alloc] init];
ADB_VHB_Heartbeat *heartbeat = [[ADB_VHB_Heartbeat alloc] initWithDelegate:heartbeatDelegate
plugins:plugins];
ADB_VHB_HeartbeatConfig *heartbeatConfig = [[ADB_VHB_HeartbeatConfig alloc] init];
heartbeatConfig.debugLogging = YES; // set this to NO for production apps.
[heartbeat configure:heartbeatConfig];

The configuration of each of the video heartbeat components follows the builder pattern:

• A configuration object is built
• The configuration object is passed as a parameter to the configure method of the component

The list below describes all the configuration parameters:

• VideoPlayerPlugin

• debugLogging: activates logging inside this plugin. Optional. Default value: NO

• AdobeAnalyticsPlugin

• channel: the name of the syndication channel. Optional. Default value: the empty string
• debugLogging: activates logging inside this plugin. Optional. Default value: NO

• AdobeHeartbeatPlugin

• trackingServer: the server to which all the heartbeat calls are sent. Mandatory. Use the value provided by your Adobe
consultant.

• publisher: the name of the publisher. Mandatory. Use the value provided by your Adobe consultant.

18Video Analytics Implementation Guide 1.5 for iOS

• ovp: the name of the online video platform through which content gets distributed. Optional. Default value: "unknown"
• sdk: the version of the video player app/SDK. Optional. Default value: "unknown"
• debugLogging: activates logging inside this plugin. Optional. Default value: NO

• Heartbeat

• debugLogging: activates logging within the core Heartbeat component. Optional. Default value: NO

Note: Setting the debugLogging flag to YES on any of the video heartbeat components will activate fairly extensive tracing
messaging which may impact performance. While these messages are useful during development and debugging, you should
set all debugLogging flags to NO for the production version of your player app. Note that the debugLogging flags default
to NO, so logging is disabled by default.

Test Your Configuration

Before you continue, run your app and check that it runs without errors. Optionally, set the debugLogging flag to YES while
you test:
heartbeatConfig.debugLogging = YES; // remove or set to NO for production!

After you test your configuration, continue to Track Player Events.

Track Player Events

Call the video heartbeat track methods when specific events occur in your player.

This process typically involves subscribing to events, registering a callback function, and then calling the correct method in the
callback. Review the Track Methods and Player Events sections for details on exactly which method you should call for each
corresponding player event.

The following example shows a simple playback scenario:
[vpPlugin trackVideoLoad]; // when a video is loaded

[vpPlugin trackSessionStart]; // when the user clicks the 'Play' button

[vpPlugin trackPlay]; // when playback begins (frames are being rendered)

[vpPlugin trackComplete]; // when the playback reaches the end of the content

[vpPlugin trackVideoUnload]; // after calling trackComplete()

Note that different players provide different ways to listen to events. Use the documentation provided by the player API to
determine how to listen for player events.

Your next step is to Test Your Video Measurement Code.

Track Methods and Player Events

Information about the correspondence between player events and the associated call exposed by the public API of the video
heartbeat library.

The video player being instrumented must be capable of triggering a series of events through which any subscriber can be
informed about what happens inside the video player. The following tables present the one-to-one correspondence between
player events and the associated call exposed by the public API of the video heartbeat library.

This section contains the following information:

• Video Playback

19Video Analytics Implementation Guide 1.5 for iOS

• Rules and Practices
• Ad Playback
•
• QoS Tracking
• Error Tracking

Video Playback

Parameter ListMethod CallEvent

NonetrackVideoLoad()Load the main video asset

NonetrackVideoUnload()Unload the main video asset

NonetrackSessionStart()Autoplay ON, or user clicks play

NonetrackPlay()Playback start

NonetrackPause()Playback stop/pause

NonetrackComplete()Playback complete

NonetrackSeekStart()Seek start

NonetrackSeekComplete()Seek complete

NonetrackBufferStart()Buffer start

NonetrackBufferComplete()Buffer complete

Rules and Practices

• Methods to be called in pairs:

The following methods must be called in pairs (that is, each track...Start() must have a corresponding
track...Complete()):

• trackBufferStart() and trackBufferComplete()
• trackPause() and trackPlay() (note that if the player is closed before the pause resumes, the corresponding method

might not be called)
• trackSeekStart() and trackSeekComplete() (with an exception: there may be multiple trackSeekStart() calls

before a trackSeekComplete())
• trackAdStart() and trackAdComplete() (unless the user seeks out of the ad without playing it to completion)
• trackChapterStart() and trackChapterComplete() (unless the user seeks out of the chapter without playing it to

completion)

The track...Start() call is not required to be followed by a track...Complete() call, as there may be other track...()
method calls in between. For example, the following sequence of track...() method calls is valid and describes a user who
is seeking through the stream while paused, and resumes playback after two seeks:
trackPause(); // Signals that the user paused the playback.
trackSeekStart(); // Signals that the user started a seek operation.
trackSeekStart(); // Signals that the user started another seek operation (before the first
one was completed).
trackSeekComplete(); // Signals that the second seek operation has completed.
trackPlay(); // Signals that the user resumed playback.

• Tracking the completion of content:

The trackComplete() method is used to signal the completion of the video (i.e., the content was played to the end). You
should call trackComplete() before calling trackVideoUnload() if the video was completed. When the user quits the

20Video Analytics Implementation Guide 1.5 for iOS

video before its completion (e.g., by switching to another video in a playlist), you should not call trackComplete(). Instead,
you should simply close the tracking session by calling trackVideoUnload().

Ad Playback

Parameter ListMethod CallEvent

NonetrackAdStart()An ad starts

NonetrackAdComplete()An ad completes

The trackAdStart() and trackAdComplete() methods are the only track methods required in order to signal the beginning
and completion of an ad.

You do not need to (and should not) call any additional track methods to signal the transition from ad to content or vice-versa.
For instance, you should not signal the pause of the main video (via trackPause()) when an ad starts. This is handled
automatically by the VideoPlayerPlugin when you call trackAdStart().

Chapter Tracking

Parameter ListMethod CallEvent

NonetrackChapterStart()A new chapter starts

NonetrackChapterComplete()A chapter completes

QoS Tracking

Parameter ListMethod CallEvent

NonetrackBitrateChange()A switch to another bitrate occurs

Error Tracking

Parameter ListMethod CallEvent

String errorId - unique error
identifier

trackVideoPlayerError()An error occurs at the player level

String errorIdtrackApplicationError()An error occurs at the application level

Test Your Video Measurement Code

A simple way to test your video heartbeat implementation is to run the code in a demo environment.

1. Load your code in a test environment and use a packet analyzer to verify that Analytics server calls and heartbeat calls are
being sent. You should see an initial call to your data collection server, and then multiple calls to the Video Heartbeat tracking
server.

In the initial call to your Analytics data collection server:

• Verify that pe=ms_s.

2. Test your implementation thoroughly to make sure you haven't missed any events. For example, if your player provides a
pause event handler and you do not call trackPause, your time played metrics will be inflated.

21Video Analytics Implementation Guide 1.5 for iOS

https://marketing.adobe.com/resources/help/en_US/sc/implement/packet_monitor.html

3. In a packet analyzer, inspect the calls, and see the Scenarios section to make sure events are being sent as expected. For
example, you should see an s:event:type of load and then start when the video begins, and complete when the video
completes.

Video Measurement Parameters

List of data-collection parameters sent by video heartbeat.

This section contains the following information:

• Video Core Parameters
• Video Ad Parameters
• Video Chapter Parameters
•
• Other Parameters

Video Core Parameters

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Video StartN/Aa.media.friendlyNameclassificationNoVideo Name

Video StartN/Aa.media.lengthclassificationYesVideo Length

Video Startvideoa.media.nameeVarYesContent

Heartbeatvideosegmenta.media.segmenteVarYesContent
Segment

Video Startvideocontenttypea.contentTypeeVarYesContent Type

Video Startvideoplayernamea.media.playerNameeVarYesContent Player
Name

Video Startvideochannela.media.channeleVarNoContent
Channel

Video Startvideostarta.media.vieweventYesVideo Initiates

Heartbeatvideoplaya.media.playeventNoContent Starts

Heartbeatvideocompletea.media.completeeventNoContent
Completes

Heartbeatvideosegmentviewsa.media.segmentVieweventYesContent
Segment Views

Heartbeatvideotimea.media.timePlayedeventYesContent Time
Spent

Heartbeatvideototaltimea.media.totalTimePlayedeventYesVideo Time
Spent

22Video Analytics Implementation Guide 1.5 for iOS

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Heartbeatvideoprogress10a.media.progress10eventNo10% Progress
Marker

Heartbeatvideoprogress25a.media.progress25eventNo25% Progress
Marker

Heartbeatvideoprogress50a.media.progress50eventNo50% Progress
Marker

Heartbeatvideoprogress75a.media.progress75eventNo75% Progress
Marker

Heartbeatvideoprogress95a.media.progress95eventNo95% Progress
Marker

Heartbeatvideoaverageminuteaudiencea.media.averageMinuteAudienceeventNoAverage Minute
Audience

Video Startvideopatha.media.namepropYesVideo Path

Heartbeatvideopausea.media.pauseeventNoPaused
Impacted
Streams

Heartbeatvideopausecounta.media.pauseCounteventNoPause Events

Heartbeatvideopausetimea.media.pauseTimeeventNoTotal Pause
Duration

Heartbeatvideoresumea.media.resumeeventNoContent
Resumes

Video Ad Parameters

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Ad StartN/Aa.media.ad.friendlyNameclassificationNoAd Name

Ad StartN/Aa.media.ad.lengthclassificationYesAd Length

Ad Startvideoada.media.ad.nameeVarYesAd

Ad StartN/Aa.media.ad.podFriendlyNameclassificationNoPod Name

Ad StartN/Aa.media.ad.podSecondclassificationYesPod Position

Ad Startvideoadpoda.media.ad.podeVarYesAd Pod

Ad Startvideoadinpoda.media.ad.podPositioneVarYesAd in Pod
Position

Ad Startvideoplayernamea.media.ad.playerNameeVarYesAd Player
Name

23Video Analytics Implementation Guide 1.5 for iOS

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Ad Startvideostarta.media.ad.vieweventYesAd Starts

Heartbeatvideocompletea.media.ad.completeeventYesAd Completes

Heartbeatvideoadtimea.media.ad.timePlayedeventYesAd Time Spent

Video Chapter Parameters

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

HeartbeatN/Aa.media.chapter.friendlyNameclassificationNoChapter Name

HeartbeatN/Aa.media.chapter.positionclassificationYesChapter
Position

HeartbeatN/Aa.media.chapter.offsetclassificationNoChapter Offset

HeartbeatN/Aa.media.chapter.lengthclassificationNoChapter
Length

Heartbeatvideochaptera.media.chapter.nameeVarYesChapter

Heartbeatvideochapterstarta.media.chapter.vieweventYesChapter Starts

Heartbeatvideochaptercompletea.media.chapter.completeeventNoChapter
Completes

Heartbeatvideochaptertimea.media.chapter.timePlayedeventYesChapter Time
Spent

Video Quality Parameters

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Heartbeatvideoqoetimetostartevara.media.qoe.timeToStarteVarNoTime to Start

videoqoetimetostartevent

Heartbeatvideoqoebuffercountevara.media.qoe.bufferCounteVarNoBuffer Events

videoqoebuffercountevent

Heartbeatvideoqoebuffertimeevara.media.qoe.bufferTimeeVarNoTotal Buffer
Duration videoqoebuffertimeevent

Heartbeatvideoqoebitratechangecountevara.media.qoe.bitrateChangeCounteVarNoBitrate
Changes videoqoebitratechangecountevent

Heartbeatvideoqoebitrateaverageevara.media.qoe.bitrateAverageBucketeVarNoAverage
Bitrate

24Video Analytics Implementation Guide 1.5 for iOS

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

Heartbeatvideoqoeerrorcountevara.media.qoe.errorCounteVarNoErrors / Error
Events videoqoeerrorcountevent

Heartbeatvideoqoedroppedframecountevara.media.qoe.droppedFrameCounteVarNoDropped
Frames videoqoedroppedframecountevent

Heartbeatvideoqoedropbeforestarta.media.qoe.dropBeforeStarteventNoDrops before
Start

Heartbeatvideoqoebuffera.media.qoe.buffereventNoBuffer
Impacted
Streams

Heartbeatvideoqoebitratechangea.media.qoe.bitrateChangeeventNoBitrate
Change
Impacted
Streams

Heartbeatvideoqoebitrateaveragea.media.qoe.bitrateAverageeventNoAverage
Bitrate

Heartbeatvideoqoeerrora.media.qoe.erroreventNoError
Impacted
Streams

Heartbeatvideoqoedroppedframesa.media.qoe.droppedFrameseventNoDropped
Frame
Impacted
Streams

Other Parameters

Sent WithClickstream/API
Variable Name

Context Data VariableVariable TypeRequired?Label

HeartbeatN/Aa.media.sdkVersionN/A*NoSDK Version

HeartbeatN/Aa.media.vhlVersionN/A*NoVHL Version

HeartbeatN/Aa.media.qoe.stallN/A*NoStalling
Impacted
Streams

HeartbeatN/Aa.media.qoe.stallCountN/A*NoStalling
Events

HeartbeatN/Aa.media.qoe.stallTimeN/A*NoTotal Stalling
Duration

* You must create your own processing rule if you want to use this parameter.

25Video Analytics Implementation Guide 1.5 for iOS

Sample player

Debugging

You can enable or disable logging for MediaHeartbeat.

Enable Debug Logging

You can enable or disable logging for each video heartbeat component.

The video heartbeat library provides an extensive tracing/logging mechanism that is put in place throughout the entire
video-tracking stack. You can enable or disable this logging for each video heartbeat component by setting the debugLogging
flag on the configuration object.

The log messages follow this format:
Format: [<timestamp>] [<level>] [<tag>] [<message>]
Example: [16:01:48 GMT+0200.848] [INFO]
[com.adobe.primetime.va.plugins.videoplayer::VideoPlayerPlugin] \
 Data from delegate > ChapterInfo: name=First chapter, length=15, position=1, startTime=0

There are several sections delimited by pairs of square brackets as follows:

• timestamp: This is the current CPU time (time-zoned for GMT)
• level: There are 4 message levels defined:

• INFO – Usually the input data from the application (validate player name, video ID, etc.)
• DEBUG – Debug logs, used by the developers to debug more complex issues
• WARN – Indicates potential integration/configuration errors or Heartbeats SDK bugs
• ERROR – Indicates important integration errors or Heartbeats SDK bugs

• tag: The name of the sub-component that issued the log message (usually the class name)
• message: The actual trace message

You can use the logs output by the video heartbeat library to verify the implementation. A good strategy is to search through
the logs for the string #track. This will highlight all the track... APIs called by your application.

For instance, this is what the logs filtered for #track could look like:
[17:47:48 GMT+0200 (EET).942] [INFO] [plugin::player] #trackVideoLoad
[17:47:48 GMT+0200 (EET).945] [INFO] [plugin::player] #trackPlay
[17:47:48 GMT+0200 (EET).945] [INFO] [plugin::player] #trackPlay > Tracking session auto-start.
[17:47:48 GMT+0200 (EET).945] [INFO] [plugin::player] #trackSessionStart
[17:47:49 GMT+0200 (EET).446] [INFO] [plugin::player] #trackChapterStart
[17:47:49 GMT+0200 (EET).446] [INFO] [plugin::player] #trackChapterComplete
[17:48:10 GMT+0200 (EET).771] [INFO] [plugin::player] #trackComplete
[17:48:10 GMT+0200 (EET).774] [INFO] [plugin::player] #trackVideoUnload

Using this validation method, you can easily spot implementation issues (e.g., the integration code never calls trackAdComplete
when an ad completes playback).

Validate implementations

To validate your Media Heartbeat implementation it will be required to use a HTTP Proxy tool to view the HTTP / HTTPS
traffic between the Application and Heartbeats/Adobe Analytics.

26Video Analytics Implementation Guide 1.5 for iOS

HTTP calls for video analytics tracking will be sent to 2 different tracking servers:

• Adobe Analytics: Adobe Analytics hits are used to mark the initiate of a Video/Ad/Chapter. Tracking server example:
<visitornamespace>.sc.omtrdc.net

The different parameters related to video tracking for the Adobe Analytics HTTP calls are described in Adobe Analytics
parameters.

• Heartbeats platform: Heartbeat platform hits (also known as heartbeats) are sent throughout the video tracking session at 10
seconds intervals (out of band events might be sent outside of the 10 seconds cycle). Tracking server example:
<visitornamespace>.hb.omtrdc.net

The different parameters related to video tracking for the Adobe Analytics HTTP calls are described in Heartbeats parameters.

Adobe Debug

Optionally, you can debug payloads (Heartbeat and Adobe Analytics) going out of Video Heartbeat Library using Adobe Debug
tool which is a freely available tool from Adobe for Video Heartbeat customers.

To use Adobe Debug, you need to contact your Adobe representative for the initial setup and registration. After you gain access
to Adobe Debug, go to Adobe Debug help to see the help information.

Heartbeats parameters

DescriptionData SourceRequired/OptionalName

The type of the
event being tracked.

Heartbeat SDKRs:event:typeAll Events

The timestamp of
the last event

of the same type in
this session. The

Heartbeat SDKRl:event:prev_ts

value is -1 if this is
the first event of this
type in this video
session.

The timestamp of
the event.

Heartbeat SDKRl:event:ts

Heartbeat SDKRl:event:duration

The playhead is
inside the currently

VideoInfo objectRl:event:playhead

active asset (main or
ad), when the event
was recorded

Randomly generated
string, the session

Heartbeat SDKRs:event:sid

27Video Analytics Implementation Guide 1.5 for iOS

https://debug.adobe.com/login?next=/#/help/

DescriptionData SourceRequired/OptionalName

id. All events in a
certain session
(video + ads) should
be the same

Video asset length
of the main asset.

VideoInfo objectRl:asset:duration /
l:asset:length

Publisher of the
asset

AdobeHeartbeatPluginConfig
object

Rs:asset:publisher

ID uniquely
identifying the video

VideoInfo objectRs:asset:video_id

in the publisher's
catalog

Asset type (main or
ad).

Heartbeat SDKRs:asset:type

The stream type.
Can be one of the

VideoInfo objectRs:stream:type

following: live, vod,
linear.

User's specifically
set visitor id

Config object for
mobile, app
mesurement
VisitorID

Os:user:id

The user's analytics
visitor id value.

Os:user:aid

The user's
marketing cloud
visitor id value.

Marketing Cloud OrgRs:user:mid

All customer user
ids set on Audience
Manager

AdobeAnalyticsPluginOs:cuser:customer_user_ids_x

AAM data sent on
each payload after
aa_start

AdobeAnalyticsPluginRl:aam:loc_hint

AAM data sent on
each payload after
aa_start

AdobeAnalyticsPluginRs:aam:blob

28Video Analytics Implementation Guide 1.5 for iOS

DescriptionData SourceRequired/OptionalName

SiteCatalyst RSID
where reports
should be sent

Report Suit ID (or
ids)

Rs:sc:rsid

SiteCatalyst tracking
server

AdobeHeartbeatPluginConfig
object

Rs:sc:tracking_server

Whether the traffic
is over HTTPS (if

AdobeHeartbeatPluginConfig
object

Rh:sc:ssl

set to 1) or over
HTTP (is set to 0).

"primetime" for
Primetime players,

AdobeHeartbeatPluginConfig
object

Os:sp:ovp

the actual OVP for
other players

OVP version stringAdobeHeartbeatPluginConfig
object

Rs:sp:sdk

Video player name
(the actual player

VideoInfo objectRs:sp:player_name

software, used to
identify the player)

The channel where
the user is watching

AdobeAnalyticsPluginConfig
object

Os:sp:channel

the content. For a
mobile app, the app
name. For a website,
the domain name.

The version number
of the

Heartbeat SDKRs:sp:hb_version

VideoHeartbeat
library issuing the
call.

The current value of
the stream bitrate
(in bps)

QosInfo objectRl:stream:bitrate

The source of the
error, either

Heartbeat SDKRs:event:sourceError Events

player-internal, or
the
application-level.

29Video Analytics Implementation Guide 1.5 for iOS

DescriptionData SourceRequired/OptionalName

Error id, uniquely
identifies the error

s:event:idRs:event:id

AdInfo objectRs:asset:ad_ids:asset:type=ad Events

Heartbeat SDKRs:asset:ad_sid

Pod id inside the
video. This value is

Heartbeat SDKRs:asset:pod_id

computed
automatically based
on the following
formula:
MD5(video_id) +
"_" + index of the
pod.

Index of the ad
inside the pod (first

AdBreakInfo objectRs:asset:pod_position

ad has index 0,
second ad index 1
etc.)

AdBreakInfo objectRs:asset:resolver

Custom ad metadataOs:meta:custom_ad_metadata.x

Unique identifier
associated to the

Heartbeat SDKRs:stream:chapter_sidChapter Events

playback instance of
the chapter. Note: a
chapter can be
played multiple
times due to
seek-back
operations
performed by the
user.

The chapter's
friendly (i.e. human
readable) name.

ChapterInfo objectOs:stream:chapter_name

The unique ID of
the chapter. This

Heartbeat SDKRs:stream:chapter_id

30Video Analytics Implementation Guide 1.5 for iOS

DescriptionData SourceRequired/OptionalName

value is computed
automatically based
on the following
formula:
MD5(video_id) +
"_" + chapter_pos.

The chapter's index
in the list of

ChapterInfo objectRl:stream:chapter_pos

chapters (starting
with 1).

The chapter's offset
inside main content,

ChapterInfo objectRl:stream:chapter_offset

excluding ads.
(expressed in
seconds)

The chapter's
duration (expressed
in seconds)

ChapterInfo objectRl:stream:chapter_length

Custom chapter
metadata

Os:meta:custom_chapter_metadata.x

Adobe Analytics parameters

Value RangeRequired/optionalHeartbeat Mapping
Parameter

NameEvents

ms_sRpeContent

videoRpe3

Os:cuser:customer_user_ids_xcid.customer_user_ids_x

Rs:asset:typec.a.contentType

Rs:sp:channelc.a.media.channel

Os:sp:player_namec.a.media.playerName

Rs:event:sidc.a.media.vsid

31Video Analytics Implementation Guide 1.5 for iOS

Value RangeRequired/optionalHeartbeat Mapping
Parameter

NameEvents

TRUERc.a.media.view

s:asset:video_idc.a.media.name

Os:metadata:customer_video_metadatac.customer_video_metadata

Os:metadata:customer_chapter_metadatac.customer_chapter_metadata

msa_sRpeAd

videoAdRpe3

Os:cuser:customer_user_ids_xcid.customer_user_ids_x

Rs:asset:typec.a.contentType

s:sp:channelc.a.media.channel

s:sp:player_namec.a.media.playerName

Rs:event:sidc.a.media.vsid

TRUERc.a.media.view

Rs:asset:video_idc.a.media.name

Rs:asset:ad_idc.a.ad.media.name

c.a.ad.media.playerName

s:asset:pod_idc.a.ad.media.pod

s:asset:positionc.a.ad.media.podPosition

TRUEc.a.ad.media.view

Os:metadata:customer_video_metadatac.customer_video_metadata

Os:metadata:customer_ad_metadatac.customer_ad_metadata

32Video Analytics Implementation Guide 1.5 for iOS

Ratings Partners Integration

(Note: Certified Metrics description including certification, contract, etc included in “home page”)

DocumentationParter

Digital Content Ratings powered by AdobeNielsen

Certified Metrics powered by AdobecomScore

Scenarios

This topic provides a scenario to illustrate when video data is collected.

Scenario and Timeline Illustrations

This topic describes a scenario to illustrate when video data is collected and contains illustrations to show the video and actions
timelines.

This section contains the following information:

• Scenario Overview
• Video Timeline
• Actions Timeline

Scenario Overview

A video (VOD) is loaded and played into a web page or application that has the following components:

DetailsComponent

Main content of 80 seconds split in two chapters.
Playback content

• Chapter 1 - chapter duration: 40 seconds
• Chapter 2 - chapter duration: 40 seconds

Three ad breaks:

• One pre-roll before first chapter that contains two ads:

• AD 1 - ad duration: 20 seconds
• AD 2 - ad duration: 15 seconds

• One mid-roll between chapters that contains one ad:

• AD 3 - ad duration: 10 seconds

• One post-roll at the end of the content that contains one ad:

• AD 4 - ad duration: 15 seconds

User interactions • Start the content after it is loaded.
• Skip back 15 seconds of content inside Chapter 1 at second 35.
• Pause the main content for 45 seconds during Chapter 2.

33Video Analytics Implementation Guide 1.5 for iOS

https://marketing-stage.adobe.com/resources/help/en_US/hbvideo/nielsen_updated/
https://marketing-stage.adobe.com/resources/help/en_US/hbvideo/comscore/

DetailsComponent

Playback events • Buffering on start for 15 seconds.
• Player error occurs during Chapter 1 at second 37.
• Re-buffering for 15 seconds during Chapter 2 at second 60.
• Bitrate changed during Chapter 2 at second 75.

Video Timeline

Actions Timeline

34Video Analytics Implementation Guide 1.5 for iOS

Tracking Explained

This topic describes when video data is collected and contains information about the actions a user takes along with video
heartbeat Library methods used, Analytics and video heartbeat library calls made, and implementation details.

See Scenario and Timeline Illustrations to view illustrations depicting the processes explained below.

The scenario illustrated in the following table is a typical end-to-end playback where there is little interaction and content is
played to the end.

Note: VideoPlayerPluginDelegate must provide the most up-to-date information it has when queried: VideoInfo
(including playhead), AdBreakInfo, AdInfo, ChapterInfo, and QoSInfo.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:001

Auto-play or Play button pressed

Video Heartbeat Library:

trackVideoLoad

trackSessionStart

Analytics Tracking Calls:

SC Video Start Call

Video Heartbeat Tracking Calls:

HB start event

HB AA start event

Implementation Details:

• Start the tracking library internal session by calling trackVideoLoad
• Set VideoInfo before any tracking method is called
• Start tracking the startup time by calling trackSessionStart method

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0102

N/A

Video Heartbeat Library:

35Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB start event

Implementation Details:

This call is sent because the app takes longer than 10 seconds to start the
stream (long buffering scenario).

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0153

Ad start (AD1)

Video Heartbeat Library:

trackAdStart

trackPlay

Analytics Tracking Calls:

SC Ad Start Call

Video Heartbeat Tracking Calls:

HB start event

HB ad start event

HB AA ad start event

HB play event

Implementation Details:

• Set AdBreakInfo before the trackAdStart method is called for the
first ad on the current ad break (pre-roll).

• Set AdBreakInfo.position to 1 because the first ad break is inside
the current main content.

36Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

• Set AdBreakInfo.startTime to 0. The startTime is the offset in the
main content (in seconds) where the ad break starts. This can also be
seen as the value of the playhead when the ad break is reached.

• Set AdInfo for AD 1 before the trackAdStart method is called.

• Set AdInfo.position to 1 for AD 1 because the first ad is inside the
current ad break.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0254

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB ad play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0355

Ad complete (AD1)

Ad start (AD2)

Video Heartbeat Library:

trackAdComplete

trackAdStart

37Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Analytics Tracking Calls:

SC Ad Start Call

Video Heartbeat Tracking Calls:

HB ad play event

HB ad complete event

HB ad start event

HB AA ad start event

Implementation Details:

• Set AdInfo to NULL for AD 1 after the trackAdComplete method is
called.

• Set AdInfo for AD 2 before the trackAdStart method is called.

• Set AdInfo.position to 2 for AD 2 because the second ad is inside
current ad break.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0456

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB ad play event

Implementation Details:

N/A

38Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:0507

Ad complete (AD2)

Video Heartbeat Library:

trackAdComplete

trackChapterStart

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB ad play event

HB ad complete event

HB chapter start event

HB play event

Implementation Details:

• Set AdInfo to NULL for AD 2 after the trackAdComplete method is
called.

• Set AdBreakInfo to Null for the current ad break (pre-roll) after the
trackAdComplete method is called.

• Set ChapterInfo for Chapter 1 before the trackChapterStart method
is called.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:10608

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

39Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:20709

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:308010

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

40Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:358511

Seek Back 15"

Video Heartbeat Library:

trackSeekStart

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:208512

N/A

Video Heartbeat Library:

trackSeekComplete

Analytics Tracking Calls:

N/A

41Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

Make sure VideoPlayerPluginDelegate will report the new playhead
(20) after trackSeekComplete is called.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:309513

N/A

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:3710214

Player error occurred

Video Heartbeat Library:

trackError

Analytics Tracking Calls:

N/A

42Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Tracking Calls:

HB error event

Implementation Details:

• Set error type and message on trackError method.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:4010515

Ad start (AD3)

Video Heartbeat Library:

trackChapterComplete

trackAdStart

Analytics Tracking Calls:

SC Ad Start Call

Video Heartbeat Tracking Calls:

HB play event

HB chapter complete event

HB ad start event

HB AA ad start event

Implementation Details:

• Set ChapterInfo to NULL for Chapter 1 after the
trackChapterComplete method is called.

• Set AdBreakInfo before the trackAdStart method is called for the
first ad on the current ad break (mid-roll).

• Set AdBreakInfo.position to 2 because the second ad break is inside
the current main content.

• Set AdBreakInfo.startTime to 40. The startTime is the offset in
the main content (in seconds) where the ad break starts. This can also
be seen as the value of the playhead when the ad break is reached.

• set AdInfo for AD 3 before the trackAdStart method is called.

43Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

• Set AdInfo.position to 1 for AD 3 because the first ad is inside the
current ad break.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:4011516

Ad complete (AD3)

Video Heartbeat Library:

trackAdComplete

trackChapterStart

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB ad play event

HB ad complete event

HB chapter start event

HB play event

Implementation Details:

• Set AdInfo to NULL for AD 3 after the trackAdComplete method is
called.

• Set AdBreakInfo to Null for the current ad break (mid-roll) after the
trackAdComplete method is called.

• Set ChapterInfo for Chapter 2 before the trackChapterStart method
is called.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:4512017

Pause button is pressed

44Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Library:

trackPause

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

HB pause event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:4513518

Play button is pressed after 15"

Video Heartbeat Library:

trackPlay

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:5514519

N/A

45Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:6015020

Buffer start event occurred

Video Heartbeat Library:

trackBufferStart

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

HB buffer event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:6016021

N/A

46Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB buffer event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:6016522

Buffer end event occurred after 15"

Video Heartbeat Library:

trackBufferComplete

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB buffer event

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:7017523

N/A

47Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Library:

N/A

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:7518024

Bitrate change occurred

Video Heartbeat Library:

trackBitrateChange

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB bitrate change event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:8018525

Ad start (AD4)

48Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Video Heartbeat Library:

trackChapterComplete

trackAdStart

Analytics Tracking Calls:

SC Ad Start Call

Video Heartbeat Tracking Calls:

HB play event

HB chapter complete event

HB ad start event

HB AA ad start event

Implementation Details:

• Set ChapterInfo to NULL for Chapter 2 after the
trackChapterComplete method is called.

• Set AdBreakInfo before the trackAdStart method is called for the
first ad on the current ad break (post-roll).

• Set AdBreakInfo.position to 3 because the third ad break is inside
the current main content.

• Set AdBreakInfo.startTime to 80. The startTime is the offset in
the main content (in seconds) where the ad break starts. This can also
be seen as the value of the playhead when the ad break is reached.

• Set AdInfo for AD 4 before the trackAdStart method is called.

• Set AdInfo.position to 1 for AD 4 because the first ad is inside current
ad break.

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:8019526

N/A

Video Heartbeat Library:

N/A

49Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

Implementation Details:

N/A

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

Actions:8020027

Ad complete (AD4)

Video Heartbeat Library:

trackAdComplete

trackComplete

trackUnload

Analytics Tracking Calls:

N/A

Video Heartbeat Tracking Calls:

HB play event

HB ad complete event

HB complete event

Implementation Details:

• Set AdInfo to NULL for AD 4 after the trackAdComplete method is
called.

• Set AdBreakInfo to Null for the current ad break (post-roll) after the
trackAdComplete method is called.

• Close the main content by calling trackComplete.

• Close the tracking library internal session by calling trackUnload.

50Video Analytics Implementation Guide 1.5 for iOS

Main Content
Timeline
(seconds)

Actions
Timeline
(seconds)

Action #

• Destroy the heartbeat library instance calling the destroy method.

Non-Linear Tracking Scenarios

This topic describes when video data is collected in non-linear scenarios and contains information about the actions a user takes
along with video heartbeat Library methods used, Analytics and video heartbeat library calls made, and implementation details.

The scenario illustrated in Tracking Explained is a typical end-to-end playback where there is little interaction and content is
played to the end.

The following table illustrates tracking scenarios where the user seeks around more or drops from the stream.

Implementation DetailsVideo Heartbeat LibraryScenarioUse Case

You can reuse one VHL instance
but make sure to call

Skip to next video •• trackVideoLoadplaylist of videos, no ads,
no chapters • trackSessionStart (optional)

trackVideoUnload/trackVideoLoad• trackPlay
and update the player delegate
videoInfo between the two clips.User clicks Next.

• trackVideoUnload
• ...
• trackVideoLoad
• ...

When the user starts seeking, wait
until it completes then call

Chapter seek •• trackVideoLoadone video content
• 3 chapters • trackSessionStart (optional)

trackChapterStart with the new• seek from chapter 1 to
chapter 3

• tracktrackChapterStart
chapter info. You should NOT call
trackChapterComplete on theUser seeks forward.

source chapter, because it was not
seen through the end.

• trackSeekStart
• trackSeekComplete
• tracktrackChapterStart
• tracktrackChapterComplete
• trackComplete
• trackVideoUnload
• destroy

Pause tracking

The Pause tracking support was added on VHL 1.6. At the same time, the buffer and pause behaviors were unified to have the
same way of tracking and same metrics. VHL will send a new pause Video Heartbeat event at each 10 seconds during pause and
will stop after 30 minutes, at this point the session will be closed. If the playback is resumed after 30 minutes of pause, VHL will
automatically create a new tracking session and send a resume event.

51Video Analytics Implementation Guide 1.5 for iOS

For the implementation that are not passing to VHL all information about the player state, a new artificial tracking event was
build called "stall" in order to define a state of the player that VHL does not know about. One simple example is when the player
is in buffer mode, the playhead has same value during that period but the VHL was not informed due to the fact that the player
is not exposing the event or just because the buffer event was not properly instrumented. The stalling event is tracked in the
same way as paused.

Pause duration less than 30 minutes

In this scenario, complete the following tasks:

1. Start playback for a content that is 10 minutes long.
2. Pause the playback after 3 minutes.
3. Resume the content after 20 minutes and play the content until the end.

Expected events

• An Analytics video initiate event after the session starts.
• A video heartbeats start event after the session starts.
• video heartbeats play events every 10 seconds until the session is paused.
• video heartbeats pause events every 10 seconds while the session is paused.
• video heartbeats play events every 10 seconds after pause;
• A video heartbeats complete event when the playback is complete.
• A complete video call sent to Analytics when a session has ended.

Add pause metrics to analytics: has paused and number of pauses.

Expected metrics

• 1 content start and 10 minutes of total time spent.
• All video solution events + has pause event, 1 pause event count.

Abandon during pause

In this scenario, complete the following tasks:

1. Start playback for a content that is 10 minutes long.
2. Pause the playback after 3 minutes;
3. Close the content after 10 minutes.

52Video Analytics Implementation Guide 1.5 for iOS

Expected results

• An Analytics video initiate event when the session starts.
• A video heartbeats start event when the session starts.
• video heartbeats play events every 10 seconds until the session is paused.
• video heartbeats pause events every 10 seconds during the pause.
• A close video call sent to Analytics when a session has ended.

Add pause metrics to analytics: has paused and number of pauses.

Pause duration more than 30 minutes

In this scenario, complete the following tasks:

1. start playback for a content that is 10 minutes long.
2. pause the playback after 3 minutes.
3. resume the content after 40 minutes and play the content to the end.

Expected events

• An Analytics video initiate event after the session starts.
• A video heartbeats start event when the session starts.
• Video heartbeats play events every 10 seconds until the content is paused.
• Video heartbeats pause events every 10 seconds during pause for 30 minutes.
• A close video call sent to Analytics once a session has ended.

Add pause metrics to analytics: has paused and number of pauses.

• No video heartbeats event for 10 minutes until playback resumes.
• An Analytics video initiate event after a new tracking session starts after the playback resumes (including a new SID).

53Video Analytics Implementation Guide 1.5 for iOS

• A video heartbeats start event after the session starts (playback resumes).
• A video heartbeats resume event after the session starts (playback resumes).
• Video heartbeats play events every 10 seconds.
• A video heartbeats complete event after the playback is complete.
• A complete video call sent to Analytics after a session has ended.

Add resume metric to analytics: has resume.

Expected metrics

• 1 content starts and 3 minutes of total time spent.
• All video solution events + has pause event, and 1 pause event count.
• 1 content starts and 7 minutes of total time spent.
• All video solution events + has resume event.

Contact and Legal Information

Information to help you contact Adobe and to understand the legal issues concerning your use of this product and documentation.

Help & Technical Support

The Adobe Experience Cloud Customer Care team is here to assist you and provides a number of mechanisms by which they
can be engaged:

• Check the Marketing Cloud help pages for advice, tips, and FAQs
• Ask us a quick question on Twitter @AdobeExpCare
• Log an incident in our customer portal
• Contact the Customer Care team directly
• Check availability and status of Marketing Cloud Solutions

Service, Capability & Billing

Dependent on your solution configuration, some options described in this documentation might not be available to you. As
each account is unique, please refer to your contract for pricing, due dates, terms, and conditions. If you would like to add to
or otherwise change your service level, or if you have questions regarding your current service, please contact your Account
Manager.

Feedback

We welcome any suggestions or feedback regarding this solution. Enhancement ideas and suggestions can be added to our
Customer Idea Exchange.

Legal

© 2017 Adobe Systems Incorporated. All Rights Reserved.
Published by Adobe Systems Incorporated.

Terms of Use | Privacy Center

Adobe and the Adobe logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States
and/or other countries. A trademark symbol (®, ™, etc.) denotes an Adobe trademark.

54Video Analytics Implementation Guide 1.5 for iOS

http://helpx.adobe.com/marketing-cloud.html
https://twitter.com/AdobeExpCare
https://customers.omniture.com/login.php
http://helpx.adobe.com/marketing-cloud/contact-support.html
http://status.adobe.com/
https://my.omniture.com/login/?r=%2Fp%2Fsuite%2Fcurrent%2Findex.html%3Fa%3DIdeasExchange.Redirect%26redirectreason%3Dnotregistered%26referer%3Dhttp%253A%252F%252Fideas.omniture.com%252Ft5%252FAdobe-Idea-Exchange-for-Omniture%252Fidb-p%252FIdeaExchange3
https://my.omniture.com/login/?r=%2Fp%2Fsuite%2Fcurrent%2Findex.html%3Fa%3DIdeasExchange.Redirect%26redirectreason%3Dnotregistered%26referer%3Dhttp%253A%252F%252Fideas.omniture.com%252Ft5%252FAdobe-Idea-Exchange-for-Omniture%252Fidb-p%252FIdeaExchange3
https://marketing.adobe.com/resources/help/en_US/terms.html
http://www.adobe.com/privacy/policy.html

All third-party trademarks are the property of their respective owners. Updated Information/Additional Third Party Code
Information available at http://www.adobe.com/go/thirdparty.

55Video Analytics Implementation Guide 1.5 for iOS

http://www.adobe.com/products/eula/third_party/

	Contents
	Video Analytics Implementation Guide 1.5 for iOS
	Getting started on iOS
	Download the SDK
	Implement the iOS library

	Implementation Guide
	Configure AdobeMobileLibrary
	How the iOS VideoPlayerPluginDelegate Works
	Implement VideoPlayerPluginDelegate
	Attaching Custom Metadata
	Standard Metadata Parameters
	Standard metadata keys for iOS
	Sample implementation on iOS
	Configure the Video Heartbeat Library
	Track Player Events
	Track Methods and Player Events
	Test Your Video Measurement Code

	Video Measurement Parameters
	Sample player
	Debugging
	Enable Debug Logging
	Validate implementations
	Adobe Debug
	Heartbeats parameters
	Adobe Analytics parameters

	Ratings Partners Integration
	Scenarios
	Scenario and Timeline Illustrations
	Tracking Explained
	Non-Linear Tracking Scenarios
	Pause tracking
	Pause duration less than 30 minutes
	Abandon during pause
	Pause duration more than 30 minutes

	Contact and Legal Information

