Adobe® Marketing Cloud

Measuring Video in Adobe Analytics

Contents

Measuring Video in Adobe ANalytics.....cccceeecccnnnnnecccsssccnnsssssecsssssnssssssssssssssssssssssssssssnesd

HoW Video MeasuremMeEnt WOKKS....cccccceeeecssecssecssesssecssesssesssesssesssssssssssssssssssssssssssssssesssesss
VIO IMOEIICS.v.veeeeeeeeeeeeeeeeereeesesesessssessessesensasssesssesssessasasssssesssssssasasasesessasssasssesesessasssssesssssssasasesesensssssssssesssensnsssssssesensnens 7

Measuring Video for Web ANalystsS......cccceccsnreccccsssnecsssssssescsseed

ViIAEO REPOIES....eeureeeeeieietesiestestssessasssssasssssssssssssessesssssssssssssassassessessessessessssssssssassassassessessestessessessssassassassassessessessssessssnses 9
Video Overview Report 10
Video Detail Report 13
Video Daypart 14
ViIidEO CONTIGUIATION.....curireerrerereereestssissesssessssssssss s ssasssssssssnses 15
Video IMPlemeNntation WOTIKSNEET. ...t ssssssssssssssssssssssssssssssssssssasssssassasssses 18

Measuring Video for DevelOpers........cccccevccnnnnnecccsscsssnnssnnccccsssssssssssssssssssssssssssssssssesses 20

FIASh VIAEO PlaybacK......ceiurieierriniereissiniiseississessissnes 20
Download AppMeasurement for Flash 20
Add the AppMeasurement for Flash Library to a Project 21
Configure AppMeasurement 23
Map Analytics Variables and Events 23
Configure Milestones 24
Track Player Events Using AutoTrack 25
Test Your Video Measurement Code 25
ActionScript Sample Code 26
Open Source Media FrameWOIrK (OSIME).......iiensinsissississsassasssns 27
Download the Media Module for OSMF 27
Dynamic Implementation 28
Custom Dynamic Implementation 29
Static Implementation 31
Using OSMF Metadata to Override a Video Name 33
APPIE TSttt sttt bbb R AR R R Rttt bR n R s Rt e en 34

Last updated 2/5/2015 Measuring Video in Adobe Analytics

Contents

Download the Media Module for iOS 34
Add the iOS Media Module to a Project 34
Map Conversion Variables and Events 34
Configure Milestones 35
Track Player Events Using AutoTrack 36
iOS Sample Code 36
ANAIOI. ettt SRR bR s bR s bbb 008 37
SHIVEITIGNT ettt bbb ss bbbt s s s es s e s bbbt b As bbb bbb et es 37
Download the Media Module for Silverlight 37
Add the Silverlight Media Module to a Project 37
Map Conversion Variables and Events 38
Configure Milestones 39
Track Player Events Using AutoTrack 40
Using the setInterface Method 40
Silverlight Sample Code 40
Using JavaScript tO Track @ VIA@O Play@r..... . ireiseieseiseisiseisssssisssesssssesssssssssssssssssssssssssssssssssssssssess 41
Download the Media Module for JavaScript 41
Add the JavaScript Media Module to a Web Page 41
Map Analytics Variables and Events 41
Configure Milestones 42
Track Video Player Events 43
JavaScript Sample Code 44
HTIVIL 5 VIAEO ... cieireisireiseisiseississississsnes 45
OTNET VIAEO PlaYrS....ueueeeeeneieiissiisesiseisssesssisssessssssssssssssssssssssssssssssssssssaes 45
Manually Tagging @ VIAEO Play@r..... . inseiniseissississsssissses 47
Track Video Player Events 47
Measuring Additional Metrics USINg Media.MONITON........ccveernnisrisseseissiseisssisssissssssssssssssssssssssssssssssssssess 48

Media ModUIE Variables... ... cceeeeeceeeecceeecceeecceeeeceeenccsesccssecssssessssssssssessssesssssssssssssssssssed 3
Media ModUIEe MeEthoOds........ccecceeeecceeeeceeeecceeecsseeccssecsssecssssessssssssssssssssssssssssssssssssssssseseess®0

VAST Video Ad TracKing....ccccccseeccccccccssnsseecccssssssssssssccsssasssscsss 04

Last updated 2/5/2015 Measuring Video in Adobe Analytics

Measuring Video FAQu....eeeeeeeeeennnnsnnnsneesseeeeececcssees®0

Migrating to Integrated Video Tracking.......cccceeeccccccnnnsssccccssssnssssssscsssssnsssssssssssssseesss8

Migrating fOr WED ANAIYSTS....cireieereiseeseistisssisssssesssesssesssesssesssassssssssssssssssssssass 68
Flash, Silverlight, and JavaScript Migration GUIE............cerninireinnininsineinsssisssssssssssssssssssssssssssssssssssees 68
Update the AppMeasurement Libraries or Media Module 69
Map Conversion Variables and Events 69
Configure Milestones 69
Update Method Calls 70
OSMF MIQration GUIAE.......ceeuriereerriineireisisseississsssessns 71
Update the OSMF AppMeasurement Libraries 71
Update the XML Configuration File 71

Last updated 2/5/2015 Measuring Video in Adobe Analytics

Measuring Video in Adobe Analytics 5

Measuring Video in Adobe Analytics

New! Adobe has released a new way to measure video. See Heartbeat Video.

Adobe Analytics provides native support for measuring the most popular video formats on the Web. Almost any other player
and video format can be measured using JavaScript. You can start measuring video using your existing video player and content.

The first section of this guide walks you through the analytics decisions you need to make to measure video, and then finishes
with an implementation worksheet to deliver to the video developer. The second section provides the in-depth details for the
video developer who implements the measurement code.

Video measurement tips, tricks and best practices on the Digital Marketing Blog:

o Why Video Measurement Matters

o Creating The Perfect Plan for Video Measurement

o Understanding Video Measurement Implementation
o Initializing Video Measurement Success

« Navigating Video Measurement Analysis

Recent updates to this guide:
Date Update

02/21/2013 Added Medi a. openAd, Medi a. cl i ck, and several medi a. ad contextData variables to support a video
ad tracking. See VAST Video Ad Tracking.

9/13/2012 Added a note that in order for JavaScript AutoTrack to work, you must have the cl assi d attribute set
on the object you want to track. The cl assi d is required to expose the event handlers used by the Media
Module to automatically track the video.

Added a note that autoTrack for Windows Media Player works only with Internet Explorer. Manual
tracking for Windows Media Player is required to support other browsers.

Added details on the OSMF XML aut oBi nd attribute that lets you start and end string literals using
curly braces. See Using OSMF Metadata to Override a Video Name.

8/6/2012 We now recommend setting the t r ackVar s and t r ackEvent s variables for all implementations, even
if Medi a. noni t or is not being used. Populate t r ackVar s with a list of each prop and eVar used in
your implementation, along with the string "events":

s. Medi a. trackVar s="event s, prop2, eVar 1, eVar 2, eVar 3";

. Populate t r ackEvent s with a list of all events used in your implementation:

s. Medi a. trackEvent s="event 1, event 2, event 3, event 4, event 5, event 6, event 7"

7/19/2012 Added links to the iOS and Android 3.x video documentation.

January 2012: New Process to Track Video Completes

You must make a small modification to your tracking code to enable the new functionality.

https://marketing.adobe.com/resources/help/en_US/sc/appmeasurement/hbvideo/
http://blogs.adobe.com/digitalmarketing/industries/media-and-entertainment/why-video-measurement-matters/
http://blogs.adobe.com/digitalmarketing/analytics/creating-the-perfect-plan-for-video-measurement/
http://blogs.adobe.com/digitalmarketing/analytics/understanding-video-measurement-implementation/
http://blogs.adobe.com/digitalmarketing/analytics/initializing-video-measurement-success/
http://blogs.adobe.com/digitalmarketing/analytics/navigating-video-measurement-analysis/

Measuring Video in Adobe Analytics 6

Why is this change needed?

Previously the 100% milestone was used to indicate a complete view. However, due to the granular nature of time tracking in
video, some players never reported an offset that equaled the total length of the video. This prevented the 100% milestone from
being reached even when the complete video was viewed.

To avoid this, completes are now tracked using an offset from the end of the video. This change should result in more accurate

tracking of video completes.
What do I need to change?

After you update to the new version of the libraries, the new method of tracking completes is enabled with an offset equal to 1
second. In you code, you need to change your contextDataMapping to define the event that is used to track completes using the
new a. medi a. conpl et e variable.

To make this change in your code, find the Medi a. cont ext Dat aMappi ng section:
s. Medi a. cont ext Dat aMappi ng = {

Remove the 100% milestone (or whatever percentage you defined as complete) from a. nedi a. ni | est ones. Save the event
value (event7 in this example) as it is used in the next step:

"a.nedi a. mlestones": {

25: "event 4",
50: "event 5",
75: "event 6",

106: "event 7" (renove this line)

b
Add a. medi a. conpl et e and map the event value previously defined for the complete milestone. The
Medi a. cont ext Dat aMappi ng section should appear similar to the following:

s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. nane": "eVar 2, prop2",
a. nedi a. segnent " : "eVar 3",
a.content Type":"eVar 1",
a. nmedi a. tinePl ayed": "event 3",
"a. nedi a.view':"event 1",
a. nedi a. segnent Vi ew': "event 2",
a. nedi a. conpl ete": "event 7",
a. medi a. m | est ones": {

25: "event 4",
50: "event 5",
75: "event 6"

If you aren't sure which event is used to track completes, you can check your SiteCatalyst video configuration in the Admin
Console.

After you make this change the complete event is sent 1 second before the end of a video.

How Video Measurement Works 7

How Video Measurement Works

This topic provides a brief overview of video measurement.

On the Web, JavaScript is added to pages on your site to enable measurement. Data is sent when a page is visited, or when a
specific action occurs (for example, something is added to the shopping cart). The data sent by this code is analyzed by Analytics
to determine the order pages were viewed, and how long viewers were on a particular page.

Similarly, code is added to your video player to enable video measurement. For videos, data is sent when a video is started,
closed, and at specific intervals or percentage-based milestones during video playback. To measure video, you add code (called
the media module) to your video player. The media module is available in multiple formats to support a variety of video players.
For example, the media module is available in ActionScript for Flash, as a plug-in for OSMF, in .NET for Silverlight, and in
JavaScript for other Web players (Windows Media Player, Quicktime, and others).

If you have the source code for the player (for example, a custom OSMF player or a direct Flash NetStream implementation),
you can compile the media module directly into the player. For other players you can integrate using a plug-in interface or by
using event handlers that are exposed by the player.

Video Metrics

This section describes the metrics available to measure video.

Measuring Video Views and Time Played

A basic implementation tracks video views and time played by sending a server call when a video is opened and closed. For a
complete view, this results in a call when the video is opened and when it is closed.

1 1

Qpen Close
o:0o0 200

This provides the data to track total views (a view event is sent on video open) and time viewed (the total time viewed is sent on
close).

When data is sent, the time viewed tracks total time spent viewing a video. It does not track how much of the video a visitor
views. It does not distinguish between viewing the file from beginning to end, and replaying a portion of the video multiple
times.

This works for shorter video clips and when you are mostly interested in total views. To gain addition insights, you can divide
a video into segments and track key milestones (such as complete views).

Measuring Video Segments

Segments let you divide an individual video into multiple parts for measurement purposes. This can provide a more granular
view of how a particular video is being viewed and help you track video fall out. If you have mostly 30 or 60-second clips, you
might not need segments. However, if you are measuring a sporting event, you might be very interested in comparing video
data in the first quarter to video data in the fourth quarter.

See the Video Detail Report to see how segment data is used to provide video insights.

How Video Measurement Works 8

Measuring Key Milestones

Milestones let you measure when a specific location in a video is viewed. When a milestone is viewed a server call is sent containing
the milestone event defined for that milestone. Milestones are defined as a percentage of total video length. Each milestones is
tracked using a custom event. You need to select a custom event for each milestone you want to track.

If you define a 50% milestone for a 2 minute video, calls are made at the following points:

U t U

Open 50% Milestone Close
0:00 1:00 200

The 50% milestone event and time viewed is reported at 1 minute. The remaining time viewed is sent at the video end. If you
define milestones at 25%, 50%, 75%, calls are made at the following points:

1 t t t 1

Open 25% Milestone 50% Milestone 75% Milestone Close
n:oo 050 100 150 200

In this example two additional calls are made containing the 25% and 75% milestone events and the time viewed.

An additional benefit to tracking milestones is that time viewed is sent incrementally. When you are tracking only the video
open and close, the time viewed is not reported until the video is closed (when the user opens a new video or the video ends).
If the player is closed unexpectedly (for example, the browser window is closed), no time viewed is reported.

In the milestone example, if the player closed unexpectedly at 1:10, 1 minute of time viewed would be measured. The 10 seconds
that occurred after the 50% milestone would not be measured.

Because these milestones are fixed points in the video, if a visitor views past the 50% milestone, then rewinds and passes the
50% milestone again, the milestone event is sent multiple times. Similarly, if a visitor skips past a milestone, an event is not sent
for that milestone.

Measuring Video Completes

Defining a complete event lets you track the number of viewers who view the end of a video. By default, if you define a video
complete event it is sent 1 second before the end of the video.

Track Seconds

Tracking seconds lets you send video data at second-based intervals throughout your video. Tracking seconds can be used with
or without video milestones. For example, if you track a 50% milestone, and then specify a track seconds interval of 15, calls
would be made at the following points:

U t U
Dpen T T TSD% Milestunef 1 f Close

a:00 0:15 0:30 0:45 1:00 1:15 1:30 1:45 2:00

Measuring Video for Web Analysts 9

Measuring Video for Web Analysts

This topic provides an overview of the video measurement implementation process for a web analyst.

Measuring video on your Web site involves two functional teams. First, the web analytics team reviews the video reports,
determines how often video data should be sent to Adobe collection servers, and selects which commerce variables and custom
events should be dedicated to video measurement. Next, the video development team uses the media module to send data when
videos are viewed on your web site.

The following table lists the process to measure video for the web analytics team:

Step Task Details

Step 1 Review the video reports to understand the | Video Reports on page 9

video metrics you can measure.

Step 2 Define the video segments and milestones you | Video Metrics on page 7
want to measure.

Step 3 Configure the video measurement reports. To measure video, you need to dedicate:

« 3 commerce variables (eVar)
¢ 4 custom events
« 1 custom insight (s.Prop)

Video Configuration

Step 4 Complete the implementation worksheet for | Video Implementation Worksheet on page 18
the video development team.

Video Reports

Analytics provides several reports and metrics to track video performance on your Web site.

Video reports are listed in the Reports > Video section.
Why are the Video Engagement Reports marked as "Beta"?

We are working to improve the functionality and layout of these reports, so expect to see some minor changes to these reports
in future releases. The data that appears on these reports is accurate and is not impacted by the beta status.

Video Engagement Reports (Beta)

Video Report Description Common Business Insights

Video Overview Report | The Video Overview Report displays several » Totals for top video metrics including unique
aggregate measurements to quickly monitor that | viewers, completion rate, average video metrics,
video is performing as expected. A graph displays | and average videos per visit.
video starts next to ad impressions to let you « Total video and ad views for specific videos

quickly view these metrics for each video. filtered by device type or country.

Measuring Video for Web Analysts 10

Video Report Description Common Business Insights

Video Detail Report Displays detailed metrics for all videos including | * Totals for top video metrics including video

starts, completion rate, play percentage, and ad starts, ad impressions, average ads per video.

* Top videos by multiple metrics

impressions.
Video Daypart Displays unique visitors and video views by time | + Audience engagement by time of day.
of day to let you quickly view when your audience | * Audience engagement compared to previous date
is engaged. ranges.
Video Metrics and Video | Video metrics and dimensions are standard * Video Conversion (Events that occur after video
Dimensions Analytics variables that can be reported directly | is viewed) by generating a report with visits that
and added to other Analytics reports. include a content type of video.

* Next/previous video flow using the video name
prop.

Video Overview Report

The video overview report is designed to let you monitor video across your site.

The Video Overview Report displays several aggregate measurements to quickly monitor that video is performing as expected.
A graph displays video starts next to ad impressions to let you quickly view these metrics for each video.

Measuring Video for Web Analysts

= Video Overview (Beta) Report |Demovideo Analyiics + || All Visits (No Segment) - Oct 2013 [

B cCreate Custom Report | <? Linkto ThisReport | [Open New Window | # Launch AdHoc Analysis

Clear Filters] | All Devices [=] 9 /ancountries [+
Top Metrics
-
211,186 140,650 0.7 106,102 12295:04:10
Video Starts AdImpressions Ave Ads Per Video Unique Viewers Total Time On Video
31.9% 0:03:30 3.8% 22.1% 2.0
CompletionRate Ave Time On Video Time Spent OnAds AdBounce Rate Videos Per Visit
Video Performance =
.
50,000
40,000 *

30,000
20,000
P ®
10,000 s
[]
-
0 =i
0 20,000 40,000 60,000 80,000 100,000
Visitors Video Starts [~
Channels Referrers Engagement by Device
100.0% 100.0% I 352%]
ADOBECOM : TYPED/BOCKMARKED 211156 MOBILE PHONE 4,541
0.0%) 0.0%) 27.2%]
ALL OTHERS 0 ALL OTHERS 0 DESKTOP b3
24.4%]
TABLET 51,560
13.0%]
ALL OTHERS 27,460

Quick Filters

Quickly display video metrics by device or geo country:

Measuring Video for Web Analysts

Clear Fitters [] | All Devices +| ¥ &l countries]
All Devices

Desktop

Tablet

Mabile Phone
Set-top Box
Telavision

, Media Player
Video EReader
Gaming Console

Video Performance

=

Click-and-drag to zoom in, then hover to view granular metrics for specific videos. Click to reset the view after you
zoom.

Measuring Video for Web Analysts 13

Video Performance

6,000

6,000

4,000

Hd Impress

video1

Ex_, 239
¥ Ad Impressions

673
Video Starts

Video Detail Report

The Video Detail Report displays detailed metrics for all videos including starts, completion rate, play percentage, and ad
impressions.

Measuring Video for Web Analysts

14

E Video Detail (Beta) Repo[‘t Romania ~ || All Visits (Mo Segment)

B cCreate Custom Report | <? Linkto ThisReport | [Open New Window | # Launch AdHoc Analysis

Entourage Series

Top Metrics

Clear Filters [| All Devices

Oct 2013 B

[=] § ancountries [+]

13 9 3 0.2 g 7 1:18:20
H Video Starts AdImpressions Ave Ads Per Video Unique Viewers Total Time On Video
CompletionRate Ave Time On Video Time Spent On Ads Ad Bounce Rate Videos Per Visit
Viewers

12

10

8

5

o}

z

]

00:00:00 00:01:00 00:02:00 00:03:00 00:04:00 00:05:00 00:06:00 00:07:00 00:08:00 00:09:00
Pod Performance Ads Performance
Pod Name Bounce Impressions Ad Name Duplicate Views Impressions
IAd break 1 0% 3 entourage 0% 3
Visitors UE AT]
Channels Referrers Engagement by Device
100.0% I 100.0% I 100.0% I
ADOBECOM 13 TYPED/BOCKMARKED 13 DESKTOP 13
0.0% i 0.0% 0.0%
ALL OTHERS 0 ALL OTHERS ALL OTHERS

B notes

Video Daypart

Displays unique visitors and video views by time of day to let you quickly view when your audience is engaged.

Measuring Video for Web Analysts 15

E Video Da'y’pa[‘t liBeta) REDCIT Dema Video Analytics w || All Visits (No Segment; - Oct 2013 B8

B Create Custom Report | &7 Linkto ThisReport | [Open Mew Window | # Launch AdHoc Analysis

Clear Fitters [] | All Devices [+] All Countries [+]

Audience Video Views E
00:00 am 03:00 am 08:00 am 09:00 am 00:00 pm 03:00 pm 08:00 pm 09:00 pm
vpm

1,000

800

Today 010ct2013-310ct 2013 09 Oct 2013 - 15 0ct 2013
978 Avg Video Views 283 Avg Video Views 909 Avg Video Views

Video Configuration

To track video, you designate a set of Custom Conversion Variables (eVars) and Custom Events for use in tracking and reporting
on video.

One Custom Insight variable (s.prop) is also used for pathing.

The variables you select for each metric are added to the video configuration page. This lets the system automatically generate
and format the standard video reports. The video name evar and the video views counter are both required. Other variables are
optional but recommended for complete measurement. After video tracking is enabled, you can view reports generated from
video data you have reported using video tracking.

The required variables are described in detail in Video Variable Reference.

You can also track any number of additional metrics for video. For example, if you use multiple video players on your site, you
might populate an evar with the player name. Some of the variables you select might also be used in other areas of your site. For
example, if used across your site, the content type variable can let you measure what percentage of your page views are coming
from video and let you relate conversion events to video.

A Important: You must log on to Version 14 of Reports & Analytics to configure these settings.

Visit Reports & Analytics, select Version 14 from the drop-down, and log on.
Click Admin > Admin Tools > Report Suites.
Select a report suite.

Click the Edit Settings drop-down list, click Video Management > then click Video Reporting.

A A

A page displays that contains a training video and information to help you configure video tracking. Click Continue.

http://sc.omniture.com
http://sc.omniture.com

Measuring Video for Web Analysts 16

6. Provide the variables and events you selected to track video. Additional milestone events can be added to the Complementary
Variables section. Any variables and events added to this section are categorized as video variables and are displayed under
the Video reports menu.

e\fars
* Video [+ | Commerce Variable 2 |E| Collecis the \ideo Name or ID. Default Expiration: Visi
. . Colects the Segment Order and Name/lD. For example:
Segments Commerce Varlable 3
g @ ' EI 1:intro 2:main. Default Expiration: Page View.
* Content Type] [commerce Varlable 1 EI Collecis the content type, either "video™ or “page”. Default

Expiration: Page View.

Custom Events

Counts the number of 2econds spent watching video

* Video Time [¥] | Custom 3 EI since the last data collection (image request). Event
Type: Counter.

* Video Vieiws [¥] | Custom 1 EI Counts the number of video views. Event Type: Counter,
* Video Completes |i' Custom 7 EI Counts the number of video ends. Event Type: Counter.
* A . Counts the number of video segment views. Event Type:

Video Segment Views

9 [¥] | Custom 2 [Counter.
Custom Insight
Videg @) [Custom Insight 2 IEI Tracks interactions between different videos. In order to

use a Custom insight, pathing must be enabled.

Complementary Variables [Optional)

Select additional variables to group with your video variables. These variables
should contain data dmensions that you want 1o laverage n your video reports,
such as video player, genre, playists, metadata, and video switches.

eVars
Include additional eVar +

Events

[Custom 5 EI

Video Variable Reference

The following table contains additional details on the commerce variables and custom events for video.

Measuring Video for Web Analysts

17

Video Metric Variable Type

Video Name eVar

Default expiration: Visit

Video Name (s.prop for | Custom Insight (s.prop)

video pathing)
Segments eVar

Default expiration: Page view
Content Type eVar

Default expiration: Page view

Variable Type

(Required) Collects the name of the video, as specified in the
implementation, when a visitor views the video in some way.
Marketing reports use the Video eVar to generate the data
displayed in video detail reports.

The Video variable must be a fully sub-related eVar. If you do
not have a fully-subrelated eVar to use for the Video variable,
contact Customer Care to have one configured. In version 15 all
eVars are fully sub-related by default.

Marketing reports allow you to classify on this variable.

(Optional) Provides video pathing information. Pathing must
be enabled for this variable by Customer Care.

Event type: Custom Insight (s.prop)

(Required) Collects video segment data, including the segment
name and the order in which the segment occurs in the video.

This variable is populated by enabling the

segnent ByM | est ones variable when tracking player events
automatically, or by setting a custom segment name when
tracking player events manually.

For example, when a visitor views the first segment in a video,
Analytics might collect the following in the Segments eVar:

1: M 0-25

The default video data collection method collects data at the
following points: video start (play), segment begin, and video
end (stop). The system counts the first segment view at the start
of the segment, when the visitor starts watching. Subsequent
segment views as the segment begins.

Collects data about the type of content viewed by a visitor. Hits
sent by video measurement are assigned a content type of "video".

This variable does not need to be reserved exclusively for video
tracking. Having other content report content type using this
same variable lets you analyze the distribution of visitors across
the different types of content. For example, you could tag other
content types using values such as “article” or “product page”
using this variable.

Measuring Video for Web Analysts

18

Video Metric Variable Type

Video Time Played Event

Type: Counter
Video Views Event

Type: Counter

Video Completes Event

Type: Counter

Video Segment Views Event

Type: Counter

Video Implementation Worksheet

Variable Type

From a video measurement perspective, Content Type lets you
identify video visitors and thereby calculate video conversion
rates.

Counts the time, in seconds, spent watching a video since the
last data collection process (image request).

Indicates that a visitor has viewed some portion of a video.
However, it does not provide any information about how much,
or what part, of a video the visitor viewed.

Indicates that a user has viewed a complete video. By default,
the complete event is measured 1 second before the end of the
video.

During implementation, you can specify how many seconds
from the end of the video you would like to consider a view
complete. For live video and other streams that don't have a
defined end, you can specify a custom point to measure
completes. For example, after a specific time viewed.

Indicates that a visitor has viewed some portion of a video
segment. However, it does not provide any information about
how much, or what part, of a video segment the visitor viewed.

This worksheet lists the information you need to provide to your video developer to measure video.

Information Required Description

Seconds and Milestones Key Milestones to track (as a % of video length):

Number of seconds between measurement calls (increments of 5):

Video Segments Divide each video into segments based on:

Examples: Quarters or halves, pre-roll, main video, post-roll, advertisement breaks.

Video Completes
P Count a view as complete seconds from the end of the video (default is
1 second).
For live events and other streams, count a view after seconds watched,

or by using the following custom calculation:

Measuring Video for Web Analysts

19

Information Required

Video measurement conversion variables
and events

AppMeasurement libraries

Description

« Video Name (eVar):

« Video Name (Prop):

o Segments (eVar):

« Content Type (eVar):

« Video Time (Event):

« Video Views (Event):

« Video Completes (Event):

« Video Segment Views (Event):

If your developer does not have access to Code Manager, he or she can review the
Measuring Video for Developers section and let you know which libraries to download.

Measuring Video for Developers

20

Measuring Video for Developers

This topic provides an overview of the video measurement implementation process for a developer.

The process you follow to measure video is based on the video player you are using. Before you begin development, review How

Video Measurement Works.

Step Task Details
Step 1 Receive the Video Implementation Worksheet from the web | Video Implementation Worksheet on page
analytics team. 18
Step 2 Complete the tasks outlined in the section for your player. The | * Flash Video Playback on page 20
general process to measure video is as follows: * Open Source Media Framework (OSMF)
on page 27

» Download and link the AppMeasurement library that contains

the media module. « Silverlight on page 37

o Other Video Pl 45
» Map the variables selected by your web analytics team. e iaeo FIyers o page

« Configure milestones.
o Track the events that occur in your player.

Follow the link in the Details column for specific instructions
for your player.

Step 3 Measure additional metrics and review the variable and method | * Measuring Additional Metrics using
reference. Media.monitor on page 48
o Media Module Variables on page 53
o Media Module Methods on page 60
Flash Video Playback

Flash Video (FLV) playback is a simple way to display videos on your web site.
To display Flash video, FLV files are added to a Flash Professional project that can be viewed using the Flash Player.

This section contains instructions to measure video that are displayed in the Flash Player.

Download AppMeasurement for Flash
The media module is part of the standard AppMeasurement Libraries for Flash.

The AppMeasurement libraries for Flash are available in Code Manager.

1. In Marketing Reports & Analytics, click Admin Tools > Code Manager.
2. Click Flash, Flex, & AIR to download the Flash SDK.
3. Extract the zip you downloaded and copy AppMeasur enent . swe to a location that is accessible to your Flash project.

Next step: Add the AppMeasurement for Flash Library to a Project.

https://sc.omniture.com/login/

Measuring Video for Developers

21

Add the AppMeasurement for Flash Library to a Project
The Flash media module provides the interface to track video.

1. Launch Flash Professional and open the Flash project where you want to include a Flash video.

2. Click File > Publish Settings, and then open ActionScript Settings.

Profile: | Default | = | Q Target: | Flash Player 11.2

Script: [ActionSeript 3.0

ActionScript Settings

3. Add the AppMeasur enent . swe library to your project.

Source path || Library path Config constants

SWC files or folders containing SWC files
@ + = A BE + #

b [S(AppConfig)fActionScript 3.0/libs
(2 ﬂ textLayout.swc - $(AppConfig)fActionScript 3.0/libs/11.0
b | £ AppMeasurement.swc - c:\development\flashilibs

4| 3

4. In the Timeline pane, select a frame that is available to the entire Flash application and open Actions.
5. To test that the library was added successfully, add the following ActionScript code to the Actions:
i mport com ommiture. AppMeasur enent ;

var s:AppMeasurenent = new AppMeasurenent ();
s. account

Asyou type "s. account ", auto complete should appear. This indicates that the library is being found successfully.

Measuring Video for Developers 22

G ¥ 0003 FH

inmport com.omniture.AppMeasurement:

e
©
@
<
I

var s:hAppMeasurement = new AppMeasurement ()
s.accnund

_movie : Object - AppMeasurement -
accessibilityImplementation : Accessibil'rtrlmplemenﬁtin[l
accessibilityProperties : AccessibilityProperties - DisplayC
account @ 5tring - AppMeasurement
alpha : Mumber - DisplayObject
autoBindVariablesByValue : Boolean - AppMeasurement
autoTrack : Boolean - AppMeasurement

I

Take a quick look at the methods and variables in the Medi a namespace, since that is where you'll spend most of your time

as you configure video:

import com.onniture.AppMeasurement;

var s:hAppMeasurement = new AppMeasurement () ;
8 .account = "myreportsuiteid™:;
s.Media.

o adSegmentByMiestones : Boolean - AppMeasurement_
o adSegmentByOffsetMilestones : Boolean - Appru'leasure[l
& adTrackMiestones : String - AppMeasurement_Module_
& adTrackOffsetMilestones @ String - AppMeasurement_M
& adTrackSeconds : Mumber - AppMeasurement_Module
& gutoTrack : Boolean - AppMeasurement_Module_Mediz
o autoTrackMediaLength : * - AppMeasurement_Module -

+r|rrr| k

Next step: Configure AppMeasurement.

Measuring Video for Developers 23

Configure AppMeasurement

Flash video measurement uses ActionScript, and is configured identically to the JavaScript implementation on your website.
The standard Analytics Variables are all available in Flash.

1. Define an AppMeasurement object and add it as a child:

i mport com ommiture. AppMeasur enent ;
var s: AppMeasurenment = new AppMeasurenent () ;
addChi | d(s);

2. Populate the following required configuration variables:

e s.account
« s.trackingServer

These values can be copied directly from your s_code.js file.

Next step: Map Analytics Variables and Events.

Map Analytics Variables and Events

After you insert the code in your project, you need to map the conversion variables and events you are using to track video.
If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

 Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

» Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. t rackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:

s. Medi a. trackUsi ngContextData = true
s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. name": "eVar 2, prop2",
. medi a. segnent": "eVar 3",
.content Type": "eVar 1",
nmedi a. ti nePl ayed": "event 3",
. nedi a.view': "event 1",
. medi a. segnent Vi ew': "event 2",
. medi a. conpl ete": "event 7"

LoD DD

Next step: Configure Milestones

https://marketing.adobe.com/resources/help/en_US/sc/implement/?f=c_sc_variables

Measuring Video for Developers 24

Configure Milestones

Video milestones determine specific points in the video that you want to track.

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

1. (Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping
variable:

s. Medi a. trackUsi ngCont ext Data = true
s. Medi a. cont ext Dat aMappi ng = {

a. medi a. nane": "eVar 2, prop2",
"a. medi a. segnent": "eVar 3",
"a.content Type":"eVar1",
"a.nmedia.tinmePl ayed": "event 3",
"a.nmedia.view': "event1",

"a. nedi a. segnent Vi ew': "event 2",
"a. medi a. conpl ete": "event 7",
"a.nmedia.mlestones": {

25: "event4",

50: "event5",

75:"event 6"

}

ki

s. Medi a. trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

You can also track using offset milestones instead:

"a.nedia.mlestones": {
30: "event4", // 30 seconds fromstart of video
60: "event5", // 60 seconds fromstart of video
120: "event 6" // 120 seconds from start of video

4 }
si Medi a.trackOf fset M | estones = "30, 60, 120";

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specified int rackOf f set M | est ones.

3. You can use segnment ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;

If you do not enable segnment ByM | est ones to define segments, you must use a manual implementation (notaut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segment ByM | est ones.

Next step: Track Player Events Using AutoTrack.

Measuring Video for Developers 25

Track Player Events Using AutoTrack

AutoTrack automatically tracks video player events such as start, stop, and pause.

This prevents you from needing to manually track these events and call the open, play, stop, and close methods directly.
See What is Autotrack?.

Add the s. Medi a. aut oTr ack variable and setittotr ue.
s. Medi a. aut oTrack = true;

Next step: Test Your Video Measurement Code.

Test Your Video Measurement Code
A simple way to test your Flash video player is to enable debugging and then view the debug output in Flash Professional.

1. Verify that AppMeasurement debugTr acki ng is enabled in your ActionScript:

/* Turn on and configure debuggi ng here */
s. debugTracki ng = true;

Press F2 to display the Output pane.
Click File > Publish Preview > Flash.
Each server call appears in the AppMeasurement Debug output similar to the following:

AppMeasur enent Debug: http://denmocorp. 112. 207. net/ b/ ss/ denpcor pscdoc/
0/ FAS- 3. 4. 3- AS3/ s03319123252294?AB=1&ndh=1&t =28/ 6/ 2011%2013¥8A33%8A2%204%20360
&ce=UTF- 8&pageNane=vi deo%20t est &g=fi | e¥BA/ / | F¥%@ C/ sandbox/ Vi deo/ vi deo%2520t est . swf
&cc=USD&event s=event 19%2CY%2C&v1=vi deo&c2=Cl i p14-t ahoe. f 4v&2=Cl i p14- t ahoe. f 4v
&pe=m s&pev3=vi deo&s=1680x1050&AQE=1

http://denocorp. 112. 207. net/ b/ ss/ denpcor pscdoc/ 0/ FAS- 3. 4. 3- AS3/ s03319123252294?AB=1

ndh=1

t =28/ 6/2011 13:33:2 4 360

ce=UTF-8

pageNane=vi deo test

g=file:///F| /sandbox/ Vi deo/ vi deo%20t est . swf

cc=UsD

event s=event 1, ,

v1l=vi deo

c2=C i pl4. f4v

v2=Cl i pl4. f4v

pe=m s

pev3=vi deo

$=1680x1050

AQE=1

This example server call is from a video start. In the previous example, eventl is selected to track video views. If you are
tracking milestones, play through your video and watch for a hit that contains the event you selected for that milestone.

event s=event 3=8, event 6

In the previous example, event 3 is selected to track time viewed, and event 6 is selected for the milestone.

If you can't get your project to work, you can create a simple video test project:

Create a new ActionScript 3.0 project and then Add the AppMeasurement for Flash Library.

Drag and drop a local video file on your project. Click Next, Next, then Finish to add the video using the default options.
Press F9 to open Actions, and then paste the ActionScript Sample Code into the actions window.

Click Debug > Debug Movie > Debug to run the project. AppMeasurement debug call appear in the Output window (press
F2 if you can't see it). Note that this data does not go to any report suite.

B =

Measuring Video for Developers 26

ActionScript Sample Code

This section contains a sample implementation in ActionScript.

A Important: Changes. account, s. tracki ngServer, and the variables in s. Medi a. cont ext Dat aMappi ng before
you use this code.

/* Import line for ActionScript 3 */
i mport com omi ture. AppMeasur enent ;

var s: AppMeasurenent = new AppMeasurenent ();
addChi 1 d(s);

/* Specify the Report Suite ID(s) to track here */
s.account = "nmyrsid"; // CHANGE THI S!

/* Turn on and configure debugging here - turn this off for production depl oyment */
s. debugTracki ng = true;
s.trackLocal = true;

/* You may add or alter any code config here */
s. pageNanme = "";

s.pageURL = "";

s. charSet = "UTF-8";

s.currencyCode = "USD';

/* Turn on and configure dickMap tracking here */
s.trackd ickMvap = fal se;

/* WARNI NG Changi ng any of the bel ow variables will cause drastic changes
to how your visitor data is collected. Changes should only be nade
when instructed to do so by your account manager.*/

/* These val ues can be copied fromyour s_code.js file. Your trackign server varies based on
1st or 3rd party cookies, and if you are using SSL. If using first party cookies,
tracki ngServer will be on your donmain, for exanple netrics.nysite.com */

s.vi sitorNanespace = "your Nanespace";
s.tracki ngServer="nyconpany. 112. 207. net"; // CHANGE THI S!
s.tracki ngServer Secure=""; //m ght not be needed

/* Configure Media Mdul e Functions */

/'l events, and every variable you track in video, including Media.nmonitor, should be in this
list.
s. Medi a. trackVar s="event s, eVar 45, eVar 46, eVar 47"; // CHANGE THESE!

/'l every event you track in video, including Media.nonitor, should be in this list
. Medi a. trackEvent s="event 45, event 46, event 47, event 48"; // CHANGE THESE!
. Medi a. aut oTr ack=t r ue;
. Medi a. trackM | est ones="25, 50, 75";
. Medi a. pl ayer Nane="Vi deo Test 1";
. Medi a. t rackUsi ngCont ext Dat a=t r ue;
. Medi a. segnent ByM | est ones=t r ue;
. Medi a. cont ext Dat aMappi ng= { // CHANGE THESE!
"a. nedi a. nane": "eVar 45",
. medi a. segnent ": "eVar 46",
.content Type": "eVar 47",
.medi a. tinmePl ayed": "event 45",
.medi a. view': "event 46",
. medi a. segnent Vi ew': "event 48",
. medi a. conpl ete": "event 49",
.nmedi a. m | estones": {
25: "event 50",
50: "event 51",
75: "event 52"

nnnnnuonuon

Measuring Video for Developers 27

s. Medi a. nonitor = function (s, nedia){

i f(medi a. event=="0PEN") {
trace("Media Open: " + nedia.nane);

/* the following code is an exanple of tracking an eVar on nmedi a open
you can do sonething simlar for any Medi a.nonitor event

don't forget to add any eVars and events used in Media.nonitor to
Medi a. trackVars and Medi a.trackEvents */

s. eVar 48=s. Medi a. pl ayer Nane;

/1
/1 s.Media.track(nmedi a. nane) ;
}
if (nedia.event == "M LESTONE") {

trace("Media M| estone Reached: " + nedia.mlestone);
}
i f(nedi a. event =="CLOSE") {
trace("Media Close: " + nedia.nane);

Open Source Media Framework (OSMF)

For most OSMF players we recommend using the AppMeasurement plug-in for OSMF.

This plug-in provides an instance of AppMeasurement auto-track support for OSMF players, and adds a reference plug-in to
OSMEF players that captures media data and events.

First, Download the Media Module for OSMF. You can add video measurement for OSMF using one of the following methods:

Implementation Method Description Guide

Dynamic Plug-in The dynamic implementation links the plug-in into | Dynamic Implementation
your Flash project at run-time. A dynamic
implementation lets you manage the OSMF player
separately from AppMeasurement tracking code
using an XML configuration file.

Custom Dynamic Plug-in This lets you extend the dynamic plug-in if you need | Custom Dynamic Implementation
to send additional metrics using Media.Monitor.

Static The static implementation links Static Implementation
AppMeasurement_Media_AutoTrackOSMF.swc
into your Flash project. You can then configure video
measurement using the library directly.

Download the Media Module for OSMF

You can access the AppMeasurement plug-in for OSMF from the SiteCatalyst Admin Console.

1. Inthe Adobe Marketing Cloud, click Admin > Admin Console > Code Manager.

2. In the Select the type of code to generate field, select ActionScript (Flash/Flex), provide the requested information, and
then click Generate Code.

3. Select the Component Files Tab, then save the necessary AppMeasurement component files to your local system:

Measuring Video for Developers 28

Option Description

Dynamic Implementation o AppMeasurementExtensionOSMF.swf

Custom Dynamic Implementation « AppMeasurementExtensionOSMF.swc

Static Implementation o AppMeasurement_Media_AutoTrackOSMF.swc

» AppMeasurement.swc

Dynamic Implementation
A dynamic implementation links the plug-in into your Flash project at run-time.
A dynamic implementation lets you manage the OSMF player separately from AppMeasurement tracking code, including the

AppMeasurement plug-in for OSMF.

To do this, load AppMeasur enent Ext ensi onOSMF. swf and specify a configuration URL that points to an XML config
file in the URL query-string. The config file contains all the media tracking settings to be used by your OSMF player.

For example, given an OSMF player with a Medi aFact or y, the dynamic implementation code might look like the following:

nmedi aFact ory. | oadPl ugi n(new
R Resour ce("ht t p: // ww cor pl. com Appeasur enent Ext ensi onCBMF. swf ?s. conf i gUR.=ht t p98A%2F2FRnmv cor pl. cond2Fasconfi g. xm™)) ;

This code tells MediaFactory to load the SWF. The SWF then loads the config file, which populates the AppMeasurement
instance inside the SWF. This effectively performs the same integration process described in the static implementation (adding
the AppMeasurement OSMF bridge and creating the reference plug-in). The s. conf i gURL parameter name in the query string
is case-sensitive.

See the following section for details on the XML configuration file.

XML Configuration File

When using a dynamic OSMF implementation, you can use an XML config file to bind variables to OSMF metadata.
AppMeasurement uses the following variable binding syntax:

<vari abl e>{ nedi a. pl ayer. net adat a(nanespace, key) } </ vari abl e>
variable: The name of the variable you wish to set (for example, eVar6).

namespace: (Optional) The OSMF metadata namespace you want to use. If you do not specify a namespace, the AppMeasurement
OSMEF plug-in uses the first matching key it locates in any namespace. When looking for keys, the plug-in looks first at
MediaElement metadata, then at MediaResource metadata.

key: The specific metadata value you want to use.

The following section contains a sample XML configuration file.

« ThetrackSeconds and ni | est one sections are optional. See Video Metrics.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

» Video Name (eVar): eVar 2
« Video Name (Prop): pr op2
« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

Measuring Video for Developers 29

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

« Video Segment Views (Event): event 2

Map these variables to the appropriate a. medi a variable in the cont ext Dat aMappi ng section.

<config>
<account >myr si d</ account >
<debugTr acki ng>t r ue</ debugTr acki ng>
<vi si t or Namespace>cor pl</vi si t or Nanespace>
<tracki ngServer>corpl. dl.sc.ontrdc. net</tracki ngServer>
<Medi a>
<aut oTr ack>t rue</ aut oTr ack>
<trackM | est ones>25, 50, 75</trackM | est ones>
<trackVars>events, eVar 1, eVar 2, eVar 3, prop2</trackVar s>
<trackEvent s>event 1, event 2, event 3, event 4, event 5, event 6, event 7</trackEvent s>
<segnent ByM | est ones>t r ue</ segnent ByM | est ones>
<trackUsi ngCont ext Dat a>t rue</t rackUsi ngCont ext Dat a>
<cont ext Dat aMappi ng>
<a. nedi a. nane>eVar 2, pr op2</ a. nedi a. name>
<a. nedi a. segnent >eVar 3</ a. nedi a. segnent >
<a. cont ent Type>eVar 1</ a. cont ent Type>
<a. medi a. ti mePl ayed>event 3</ a. nedi a. ti mrePl ayed>
<a. nedi a. vi ew>event 1</ a. nedi a. vi ew>
<a. medi a. segnent Vi ew>event 2</ a. nedi a. segnent Vi ew>
<a. medi a. conpl et e>event 7</ a. nedi a. conpl et e>
<a. nedi a. m | est ones>
<i tem nane="25">event 4</itenr
<i tem nanme="50">event 5</i t enr
<i tem nane="75">event 6</itenp
</ a.nmedi a. m | est ones>
</ cont ext Dat aMappi ng>
</ Medi a>
</ confi g>

Troubleshooting a Dynamic OSMF Implementation

If you are unable to capture data with your dynamic implementation, consider the following troubleshooting tips:

» When using a dynamic implementation, you cannot load the plug-in from a local drive. You must load it from a Web server
to avoid Flash security errors.

» When testing the dynamic implementation, listen for the pluginLoadError event in MediaFactory. This event captures any
load errors related to the plug-in.

Be aware of the following issues when using the configURL parameter:

« XML tags are case sensitive.

« Do not enclose strings in quotes.

« Booleans can be set to true or false.

o Use entities for special characters. For example: < for "<", > for ">", and & for "&".

» Before using configURL, you might need to configure Flash security to suport using a configuration file from an external
domain. For more information about Flash security, search for crossdomain at http://www.adobe.com/support/flashplayer/.

Custom Dynamic Implementation

If you use a dynamic plug-in implementation to track an OSMF player, and also need to use a custom Medi a. moni t or method,
you can build your own custom dynamic plug-in by subclassing the prebuilt dynamic plug-in.

Along with the prebuilt AppMeasur enent Ext ensi onOSMF. swf , you can also download
AppMeasur enent Ext ensi onOSMF. swe, which is a Flash library that provides an AppMeasurementExtension class for

subclassing to build a custom dynamic plug-in.

http://www.adobe.com/support/flashplayer/

Measuring Video for Developers 30

The custom dynamic plug-in should do the following. Once compiled, you can use it like the pre-built dynamic plug-in.

Import com.omniture. AppMeasurementExtension.
Define a class that will be the SWF that extends AppMeasurementExtension.
Override the public function customizeExtension():void method.

Inside of your customizeExtension method, update the “s” member as needed. The “s” member is the instance of
AppMeasurement inside of the AppMeasurementExtension.

5. Compile your custom SWF linking against AppMeasurementExtensionOSMF.swc.

Ll e

For example, the following ActionScript code for a custom dynamic plug-in does the following:

1. Overrides the video name tracked with the episodeID from the OSMF metadata.
2. In the Media.monitor method, sets eVarl to the “series” key, eVar2 to the “season” key, and eVar3 to the “episode” key in
the http://www.corpl.com/ namespace.
3. In the Media.monitor method, sends in custom events “eventl” as video starts and “event2” as video stops.
package { _ _
i nport com ommi t ure. AppMeasur ement Ext ensi on;

public class CustonPlugi n extends AppMeasurenent Ext ensi on {
public function custom zeExtension():void {

super () ;

s. Medi a. aut oTr ackMedi aNanme = "{nedi a. pl ayer. net adat a(http://ww. cor pl. com
, epi sodel D) "

S. Medi a. nonitor = function (s:Object, nedi a: Cbj ect) {
s.trackVars = "events, eVar1, eVar 2, eVar 3";

s.trackEvents "event 1, event 2";

s.eVarl = nedi a. pl ayer. netadata("http://ww. corpl. com","series");
s.eVar2 = nedi a. pl ayer. netadata("http://ww. corpl. com ", "season");
s.eVar3 = nedi a. pl ayer. netadata("http://ww. corpl. conl"”, "epi sode");
i f (nmedia. medi aEvent == "OPEN') {
s.events = "event1l";
s. Medi a. track(nedi a. nane) ;
} else if (nedia.nedi aEvent == "CLOSE") ({
S.events = "event2";
s. Medi a. track(nmedi a. nane) ;
}
}
}
}
}
OSMF Metadata

You can access OSMF metadata within your video player.
To use OSMF metadata inside of your Media.monitor method, call media.player.metadata(namespace,key), where:

namespace: (Optional) The OSMF metadata namespace you want to use. If you do not specify a namespace, the AppMeasurement
OSMF plug-in uses the first matching key it locates in any namespace. When looking for keys, the plug-in looks first at
MediaElement metadata, then at MediaResource metadata.

key: The specific metadata value you want to use.

For example, the following custom Media.monitor method sets eVarl to the “series” key, eVar2 to the “season” key, and eVar3
to the “episode” key in the http://www.corpl.com/ namespace:

s. Medi a. nonitor = function (s: Object, nedi a: Cbject) {

s.trackVars = "events, eVarl, eVar 2, eVar 3";

s.trackEvents = "event1, event2";

s.eVarl = nedi a. pl ayer. netadata("http://ww. corpl. com","series");
s.eVar2 = nedi a. pl ayer. netadata("http://ww. corpl. con","season");
s.eVar3 = nedi a. pl ayer. netadat a("http://ww. corpl.conl", "epi sode");
i

f (nedi a. nedi aEvent == "OPEN') ({
Ss.events = "event1l";

Measuring Video for Developers 31

s. Medi a. track(nedi a. nane) ;

} else if (nedia.nedi aEvent == "CLOSE") ({
s.events = "event2";
s. Medi a. track(nmedi a. nane) ;

Static Implementation

The static implementation links AppMeasurement_Media_AutoTrackOSMF.swc into your Flash project before compiling it
for use.

AppMeasurement_Media_AutoTrackOSMF.swc includes the bridge class AutoTrackOSMF.

For example, once you have linked both AppMeasurement and the AppMeasurement plug-in for OSMF into the Flash project
that includes an OSMF player with a MediaFactory, the tracking code implementation might look like the following:

i nport com ommiture. AppMeasurenent; //1
i mport com ommiture. nedi a. Aut oTrackOSMF; //2

var s: AppMeasurement = new AppMeasurenent () ;
s. debugTracki ng = true;

s.trackLocal = true;

s.account = "jdoe";

s.vi sitorNanmespace = “corpl”;

s.tracki ngServer = "corpl.dl.sc.ontrdc.net";
s. pageNane = "OSMF Pl ayer";

"

. Medi a. trackSeconds = 15;
s. Medi a. addAut oTr ackHandl er (new Aut oTrackOSMF()); //3
s. Medi a. aut oTrack = true;

nmedi aFact ory. | oadPl ugi n(s. Medi a. Aut oTr ackOSMF. pl ugi nResource); //4
The highlighted code performs the linking of AppMeasurement to the OSMF player, including:

Import the AppMeasurement class
Import the AppMeasurement plug-in for OSMF class
Add the auto-track support for OSMF to an instance of AppMeasurement

oW =

Loading the reference plug-in into the OSMF MediaFactory.

Map Analytics Variables and Events
After you insert the code in your project, you need to map the conversion variables and events you are using to track video.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

« Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

« Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. trackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

Measuring Video for Developers 32

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:

s. Medi a. trackUsi ngCont ext Data = true
S. |\/Edl a. cont ext Dat aMappi ng = {
"a. medi a. nane": "eVar 2, prop2",
. medi a. segment :"eVar 3",
.content Type":" eVar 1",
.nmedi a.tinmePl ayed": "event 3",
. medi a.view': "event 1",
. medi a. segnent Vi ew': "event 2",

"a
a
"a
"a
a
a. nmedi a. conpl ete": "event 7"

K

Next step: Configure Milestones

Configure Milestones

Video milestones determine specific points in the video that you want to track.

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

(Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping
variable:

s. Medi a. trackUsi ngCont ext Data = true
S. |\/Edl a. cont ext Dat aMappi ng = {

"a. medi a. nane": "eVar 2, prop2",
"a. medi a. segment :"eVar 3",
"a.content Type":" eVar 1",
"a.nmedia.tinmePlayed": "event 3",
"a. nedi a.view':"event 1",

"a. nedi a. segnent Vi ew': "event 2",
"a. nmedi a. conpl ete": "event 7",
"a.media. mlestones": {

25. "event 4",

50: "event5",

75: "event 6"

}

b

s. Medi a. trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

You can also track using offset milestones instead:

"a. medi a. m | estones": {
30: "event4", // 30 seconds fromstart of video
60: "eventb5", // 60 seconds fromstart of video
120: "event 6" // 120 seconds fromstart of video

i ¢ :
si Medi a.trackOrfset M | est ones = " 30, 60, 120";

Measuring Video for Developers 33

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specifiedint rackOf f set M | est ones.

3. You can use segnment ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;

If you do not enable segment ByM | est ones to define segments, you must use a manual implementation (not aut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segnent ByM | est ones.

Next step: Track Player Events Using AutoTrack.

Track Player Events Using AutoTrack
AutoTrack automatically tracks video player events such as start, stop, and pause.
This prevents you from needing to manually track these events and call the open, play, stop, and close methods directly.

See What is Autotrack?.

Add the s. Medi a. aut oTr ack variable and set it tot r ue.
s. Medi a. aut oTrack = true;

Next step: Test Your Video Measurement Code.

Using OSMF Metadata to Override a Video Name

By default, the AppMeasurement OSMF plug-in uses the URL from the Medi aResour ce as the video name.

You can override this with OSMF metadata by using variable binding to bind Medi a. aut oTr ackMedi aNane to the OSMF

metadata of your choice.

You can do this using either an XML config file, or using ActionScript. Both of the following examples override the video name
with the episodelD from the OSMF metadata.

Example config.xml (dynamic implementation)
<aut oTr ackMedi aNane>{ nedi a. pl ayer. net adat a(htt p: // waww. cor p1. cont, epi sodel D) } </ aut oTr ackMedi aNane>

Example ActionScript (staticimplementation)

s. Medi a. addAut oTr ackHandl er (new Aut oTrackOSM=()) ;
s. Medi a. aut oTr ackMedi aNane = "{nedi a. pl ayer. net adat a(htt p: //ww. cor pl. conl, epi sodel D) } "
s. Medi a. autoTrack = true;

Variable Binding

These examples use curly braces ({ }) to populate an XML tag with a variable value. If you need to include curly braces at the
beginning and end of a literal tag value, set the aut oBi nd attribute to f al se on the tag: <aut oTr ackMedi aNane
aut oBi nd=f al se>{ 123} </ aut oTr ackMedi aNane>

Measuring Video for Developers 34

AppleiOS

Note: These instructions are for version 2.x of AppMeasurement for iOS, which is available in Code Manager in Admin
Console and documented here. Version 3.x of the AppMeasurement Libraries for iOS are not covered in this guide, they are
documented here.

Download the Media Module for iOS

The Media Module is part of the standard AppMeasurement libraries for iOS.

1. Inthe Adobe Marketing Cloud, click Admin > Admin Console > Code Manager.

2. In the Select the type of code to generate field, select iOS (iPhone and iPad), provide the requested information, and then
click Generate Code.

3. Inthe iPhone Config Text section, save the s. account and s. t r acki ngSer ver variable and value. These variables are
required for implementation.

4. Select the Component Files Tab, then save the AppMeasurement_iOS.zip to your local system.

Add the iOS Media Module to a Project

1. Launch the Xcode IDE.
2. In the Groups & Files panel, right-click on the project and then click Add Files To "Project Name".

Select the following options:

« Select copy items into destination group's folder.

o Select create groups for any added folders.

o Set Reference Type to Default.

« Set Text Encoding to Unicode (UTEF-8).

« Select Recursively create groups for any added folders.

o In the Add To Targets section, make sure your project is selected.

3. Browse to AppMeasur enent . h, then click Add.
4. Navigate to the Build Phases tab of your desired target and then Expand the Link Binary with Libraries item.
5. Click the + button and click Add Other. Browse to the | i bAppMeasur enent . a file and click Open.

Map Conversion Variables and Events

After you insert the code in your project, you need to map the conversion variables and events you are using to track video.
If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

e Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

https://marketing.adobe.com/resources/help/en_US/sc/appmeasurement/ios/oms_sc_appmeasure_ios.pdf
https://marketing.adobe.com/resources/help/en_US/sc/appmeasurement/ios/index.html

Measuring Video for Developers 35

« Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. trackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:
s. Medi a. trackUsi ngCont ext Data = true
S. |\/de a. cont ext Dat aMappi ng = {
"a. nmedi a. nane": "eVar 2, prop2",
"a. medi a. segrrent ":"eVar3",
a.content Type":" eVar 1",
"a.nedia.timePl ayed": "event 3",
"a. media.view': "event 1",
a. nedi a. segnent Vi ew': "event 2",
a. nedi a. conpl ete": "event 7"

Configure Milestones

Video milestones determine specific points in the video that you want to track.

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

(Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping
variable:

s. Medi a. trackUsi ngCont ext Data = true
S. I\/Edl a. cont ext Dat aMappi ng = {
. medi a. nane": "eVar 2, prop2",
a. nedi a. segrrent :"eVar 3",
a.content Type":" eVar 1",
a. nedi a. ti mePl ayed": "event 3",
"a.nedi a.view': "event 1",
a
a
a

QJ

. medi a. segnent Vi ew': "event 2",
.medi a. conpl ete": "event 7",
. medi a. m | estones": {

25: "event 4",
50: "event5",
75: "event 6"

}

i ¢
s. Medi a. trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

You can also track using offset milestones instead:

"a. medi a. m | estones": {
30: "event4", // 30 seconds fromstart of video

Measuring Video for Developers 36

60: "event5", // 60 seconds from start of video
120: "event 6" // 120 seconds fromstart of video

i ¢ :
st Medi a. trackOf f set M | est ones = " 30, 60, 120";

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specifiedint rackOf f set M | est ones.

3. You can use segnent ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;

If you do not enable segment ByM | est ones to define segments, you must use a manual implementation (not aut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segnent ByM | est ones.

Track Player Events Using AutoTrack

AutoTrack automatically tracks video player events such as start, stop, and pause.
This prevents you from needing to manually track these events and call the open, play, stop, and close methods directly.

See What is Autotrack?.

Add the s. Medi a. aut oTr ack variable and setittot r ue.
s. Medi a. autoTrack = true;

iOS Sample Code

This section contains a sample implementation for iOS.

#i nport " ADVS_Medi aMeasur enent . h"
s. Medi a. trackUsi ngCont ext Data = YES;
s. Medi a. cont ext Dat aMappi ng = [NSDi cti onary dictionaryWthCbj ect sAndKeys:
@eVar 2, prop2", @ a. nedi a. nane",
@eVar 3", @a. nedi a. segnent ",
@eVar1", @a. cont ent Type",
@event 3", @a. nedi a. ti nePl ayed",
@event 1", @a. nedi a. vi ew',
@event 2", @a. nedi a. segnent Vi ew',
@event 7", @a. nedi a. conpl et e",
_m | estoneMappi ngDi ct, @a. nedi a. n | est ones",
_of fset M | est oneMappi ngDi ct, @ a. nedi a. of f set M | est ones",
nilj;

NSDi ctionary *_m | est oneMappi ngDict = [NSDi ctionary dictionaryWthQbj ect sAndKeys:
@ event 4", @ 25",
@event5", @50",
@eventb", @75",
nilj;
NSDi ctionary *_offsetM | estoneMappi ngDict = [NSDi ctionary dictionaryWthCbject sAndKeys:
@event 8", @ 20",
@event9", @ 40",
@event 10", @60",
nill;
/1 Track By M| estones:
s. Medi a.trackM | estones = @ 25, 50, 75";

/1 track M| estones & segnent ByM | estones:
s. Medi a.trackM | estones = @ 25, 50, 75";
s. Medi a. segnent ByM | est ones = YES;

Measuring Video for Developers 37

/'l track by seconds:
s. Medi a. trackSeconds = 15;

/1 track Ml estones & segnentByM | estones & seconds:
s. Medi a.trackM | estones = @ 25, 50, 75";

s. Medi a. segnent ByM | est ones = YES;

s. Medi a. trackSeconds = 15;

/'l track offsetM | estones & segnment ByOr f set M | est ones:
s. Medi a.trackOf fset M | estones = @ 15, 30, 45, 60, 75, 90";
s. Medi a. segnent ByOf f set M | est ones = YES;

/]l track offsetMI estones:
s. Medi a.trackOf fset M | estones = @5, 15, 45";

Android

Note: Version 1.x of AppMeasurement for Android, which is available in Code Manager in Admin Console and documented
here, does not support video measurement. Version 3.x of the AppMeasurement Libraries for Android supports video
measurement and is documented here.

Silverlight

This section contains instructions to measure video that is displayed using Silverlight.

Download the Media Module for Silverlight

The media module is part of the standard AppMeasurement Libraries for Windows Phone, Silverlight, and .NET.

To add the media module for Silverlight you download the component libraries and include them in your project.

1. Inthe Adobe Marketing Cloud, click Admin > Admin Console > Code Manager.

2. Select Windows Phone, Silverlight, and .NET, provide the requested information, and then click Generate Code.

3. From the C# Example Tab, copy the sample to a text file and save it. This code can be copied to your Silverlight Project later.
4

. From the Component Files Tab, download AppMeasur enent _Si | ver | i ght.dl | and
AppMeasur ement _Si | verli ght _Debug. dl|.

Add the Silverlight Media Module to a Project

The Media Module defines the interfaces to track video.

The following task uses the Microsoft Web Developer 2008 Express Edition.

In Visual Web Developer, Click File > New Project.

Select Silverlight Application, then click OK.

Deselect Host the Silverlight application in a new Web site, then click OK.
In the Solution Explorer, right-click References, then select Add Reference.

o R =

Select the Browse tab, browse to and select the appropriate AppMeasurement for Silverlight library, then click OK.

https://marketing.adobe.com/resources/help/en_US/sc/appmeasurement/android/oms_sc_appmeasure_android.pdf
https://marketing.adobe.com/resources/help/en_US/sc/appmeasurement/android/index.html

Measuring Video for Developers 38

Add Media Module Code

1. Add the following line to the Silverlight project to enable AppMeasurement for the project.
usi ng com ommi t ure;

2. Create a variable for the AppMeasurement instance in your project. For example:
s = new AppMeasurenent () ;

3. Create an instance of the AppMeasurement object and add the necessary Marketing Cloud variables to the Silverlight
application. For example:

usi ng com ommi t ure;
InitializeConponent();
s = new AppMeasurenent () ;

/* Specify the Report Suite ID(s) to track here */
s.account = "myreportsuitel D';

/* Turn on and configure debuggi ng here */

s. debugTracki ng = true;

/* You may add or alter any code config here */

s. pageNane = "";

. pageURL = ""
.charSet = "UTF-8";
.currencyCode = "USD';

n unon

Map Conversion Variables and Events
After you insert the code in your project, you need to map the conversion variables and events you are using to track video.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

 Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

» Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. t rackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:

s. Medi a. trackUsi ngContextData = true
s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. name": "eVar 2, prop2",

a. nedi a. segnent " : "eVar 3",
"a.content Type":"eVar1",
"a.media.tinmePl ayed": "event 3",

a. nedi a. view': "event 1",

a. nedi a. segnent Vi ew': "event 2",

Measuring Video for Developers 39

"a. nmedi a.conpl ete": "event 7"

K

Configure Milestones

Video milestones determine specific points in the video that you want to track.

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

1. (Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping
variable:

s. Medi a. trackUsi ngCont ext Data = true
s. Medi a. cont ext Dat aMappi ng = {

a. medi a. nane": "eVar 2, prop2",
"a. medi a. segnent": "eVar 3",
"a.content Type":"eVar1",
"a.nmedia.tinmePl ayed": "event 3",
"a.nmedia.view': "event1",

"a. nmedi a. segnent Vi ew': "event 2",
"a. medi a. conplete": "event 7",
"a.nmedia.mlestones": {

25: "event4",

50: "event5",

75:"event 6"

}

ki

s. Medi a. trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

You can also track using offset milestones instead:

"a.nedia.mlestones": {
30: "event4", // 30 seconds fromstart of video
60: "event5", // 60 seconds fromstart of video
120: "event 6" // 120 seconds from start of video

;. }

s. Medi a. trackOf f set M | estones = "30, 60, 120" ;

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specified int rackOf f set M | est ones.

3. You can use segnment ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;

If you do not enable segnment ByM | est ones to define segments, you must use a manual implementation (notaut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segment ByM | est ones.

Measuring Video for Developers 40

Track Player Events Using AutoTrack
AutoTrack automatically tracks video player events such as start, stop, and pause.
This prevents you from needing to manually track these events and call the open, play, stop, and close methods directly.

See What is Autotrack?.

Add the s. Medi a. aut oTr ack variable and setittotr ue.
s. Medi a. aut oTrack = true;

Using the setinterface Method

This method specifies a root layout that you can use to find the root of the Silverlight application.

Theset | nt er f ace method is available only in the Silverlight media module. Finding the root is necessary for certain advanced
features such as autoTrack.

The following example shows how to set the root layout object using set | nt er f ace:

s.setInterface(interface);

Silverlight Sample Code

This section contains a sample implementation for Silverlight.

usi ng com ommiture;

nanespace AppMeasur enent Exanpl e {
public partial class Page : UserControl {
AppMeasur enment s;

public Page() {
InitializeConponent();

s = new AppMeasurenent () ;

/* Specify the Report Suite ID(s) to track here */
s.account = "myreportsuitel D';

/* Turn on and configure debuggi ng here */

s. debugTracki ng = true;

/* You may add or alter any code config here */

S. pageName = "";

S. pageURL = "";

s. charSet = "UTF-8";

s.currencyCode = "USD';

s. Medi a.trackM | est ones="25, 50, 75";

s. Medi a. pl ayer Nane="My Medi a Pl ayer";

s. Medi a. trackUsi ngContextData = true

s. Medi a. segnent ByM | est ones = true;

s. Medi a. cont ext Dat aMappi ng = new Di ctionary<string, obj ect> {

a. nedi a. nane": "eVar 2, prop2",
"a. medi a. segnent": "eVar 3",
"a.content Type":"eVar 1",

"a. media.tinmePl ayed": "event 3",
"a.nedi a.view': "event 1",

"a. nmedi a. segnent Vi ew': "event 2",
"a. medi a. conpl ete": "event 7",
"a. media. m | estones": {

25: "event 4",
50: "event 5",
75: "event 6"

Measuring Video for Developers 41

s: Medi a. aut oTrack = true;
s. Medi a. att ach(medi aEl ement) ;

// ot her page code

Using JavaScript to Track a Video Player

JavaScript can be used to track a wide variety of players. To track using JavaScript, you add code to the web page that contains
your player and track the player using event handlers.

This section contains instructions to measure video using JavaScript.

Download the Media Module for JavaScript

The media module for JavaScript is included in the AppMeasurement for JavaScript download.

If you are using AppMeasurement for JavaScript 1.x, paste the contents of AppMeasur enent _Modul e_Medi a. j s just
above the ============== DO NOT ALTER ANYTHI NG BELOW TH S LI NE ! =============== comment.

If you are using H Code, find the media module and remove the surrounding comments:

[****% UNCOVMMENT TO USE THE Media MODULE *****

*x%x+ END Medi a MODULE COMVENT ***/

Add the JavaScript Media Module to a Web Page

The Media module code is copied into your s_code. j s file.

1. Addacalltos. | oadMbdul e to load the Media module.

/*********'\/Edi a '\/bdul e C‘a.l | s**************/
s. | oadModul e(" Medi a")

2. Insert the Media module code into the modules section.

/****************************** '\mJLES **************************/

/* Insert the nedia nodul e tracking code here. */

See JavaScript Sample Code.

Map Analytics Variables and Events
After you insert the code in your project, you need to map the conversion variables and events you are using to track video.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

 Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

Measuring Video for Developers 42

« Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. trackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:
s. Medi a. trackUsi ngCont ext Data = true
S. |\/de a. cont ext Dat aMappi ng = {
"a. nmedi a. nane": "eVar 2, prop2",
"a. medi a. segrrent ":"eVar3",
a.content Type":" eVar 1",
"a.nedia.timePl ayed": "event 3",
"a. media.view': "event 1",
a. nedi a. segnent Vi ew': "event 2",
a. nedi a. conpl ete": "event 7"

b
Next step: Configure Milestones

Configure Milestones

Video milestones determine specific points in the video that you want to track.

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

(Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping
variable:

s. Medi a. trackUsi ngContextData = true
S. Ivedl a. cont ext Dat aMappi ng = {

. medi a. nane": "eVar 2, prop2",

a. medi a. segnent :"eVar 3",

a.content Type":" eVar 1",

a. nedi a. ti mePl ayed": "event 3",

a. nedi a. view': "event 1",
a
a
a

Q)

. medi a. segnment Vi ew': "event 2",
. medi a. conpl ete": "event 7",
.medi a. m | estones": {

25: "event 4",
50: "event5",
75: "event 6"

}

1%
s. Medi a.trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

Measuring Video for Developers 43

You can also track using offset milestones instead:

"a.nmedia.mlestones": {
30: "event4", // 30 seconds fromstart of video
60: "event5", // 60 seconds fromstart of video
120: "event 6" // 120 seconds fromstart of video

b }

s. Medi a. trackOf f set M | estones = "30, 60, 120" ;

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specifiedint rackOf f set M | est ones.

3. You can use segnment ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;

If you do not enable segment ByM | est ones to define segments, you must use a manual implementation (not aut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segnent ByM | est ones.

Next step: Track Player Events Using AutoTrack.

Track Video Player Events

You can track media players by creating functions attached to the video player event handlers

This lets you call Medi a. open, Medi a. pl ay, Medi a. st op, and Medi a. cl ose at the appropriate times. For example:
Load: Call Medi a. open and Medi a. pl ay

Pause: Call Medi a. st op. For example, if a user pauses a video after 15 seconds, call s. Medi a. st op(" Vi deol", 15)
Buffer: Call Medi a. st op while the video buffers. Call Medi a. pl ay when playback resumes.

Resume: Call Medi a. pl ay. For example, when a user resumes a video after initially playing 15 seconds of the video, call
s. Medi a. pl ay(" Vi deol", 15).

Scrub (slider): When the user drags the video slider, call Medi a. st op. When the user releases the video slider, call Medi a. pl ay.

End: Call Medi a. st op, then Medi a. cl ose. For example, at the end of a 100-second video, call
s. Medi a. st op(" Vi deol", 100), then s. Medi a. cl ose(" Vi deol").

To accomplish this,you can define four custom functions that you can call from the media player event handlers. The various
parameters passed into Medi a. open, Medi a. pl ay, Medi a. st op, and Medi a. cl ose come from the player. The following
pseudocode demonstrates how this might be done:

/*Call on video | oad*/

function startMvie(){
s. Medi a. open(nedi aNane, nedi aLengt h, medi aPl ayer Nane) ;
pl ayMovi e() ;

}

/*Call on video resunme from pause and slider rel ease*/
function playMvie()({
s. Medi a. pl ay(nedi aNane, nedi aOf f set, segnent Num segnent, segnentLlLength);

}

/*Call on video pause and slider grab*/
function stopMvie(){
s. Medi a. st op(nmedi aNane, nedi alf f set) ;

}

/*Call on video end*/

Measuring Video for Developers 44

function endMovi e(){
st opMovi e() ;
s. Medi a. cl ose(nedi aNane) ;

}

JavaScript AutoTrack

The JavaScript media module for identifies all <enbed> or <obj ect > tags in the page HTML. It then searches the data in each
tag to determine which media player, if any, is being used. If the player is Windows Media Player, Quicktime, or Real Player,
aut oTr ack can be used, though autoTrack for Windows media player works only with Internet Explorer. Manual tracking for

Windows Media Player is required to support all other browsers.

You must have the cl assi d attribute set on the object you want to track. The cl assi d is required to expose the event handlers
used by the Media Module to automatically track the video.

s. Medi a. autoTrack = true

JavaScript Sample Code

This section contains a sample implementation in JavaScript.

s. usePl ugi ns=true
function s_doPl ugi ns(s) {

/* Add manual calls to nodul es and pl ugins here */
s. doPl ugi ns=s_doPI ugi ns

/*********'\/Edi a '\/bdul e Cal | S**************/
s. | oadModul e(" Medi a")

/*Configure Media Modul e Functions */

. Medi a. aut oTrack= true;

. Medi a. trackVars="events, prop2, eVar 1, eVar 2, eVar 3";

. Medi a. trackEvent s="event 1, event 2, event 3, event 4, event 5, event 6, event 7"
. Medi a. trackM | est ones="25, 50, 75";

. Medi a. pl ayer Nane="My Medi a Pl ayer";

. Medi a. segnent ByM | est ones = true;

. Medi a. trackUsi ngCont ext Data = true;

. Medi a. cont ext Dat aMappi ng = {

nnnnnunuonuon

a. medi a. nane": "eVar 2, prop2",
a. nedi a. segnent " : "eVar 3",
a.content Type":"eVar 1",

a. nedi a. ti mePl ayed": "event 3",

"a. nedi a.view':"event 1",

a. nedi a. segnent Vi ew': "event 2",
a. nedi a. conpl ete": "event 7",

a. nedi a. m | estones": {

25: "event 4",

50: "event 5",

75: "event 6"

S. Medi a. nonitor = function (s,nedia){ //If Needed

}

/* Turn on and configure debuggi ng here */
s. debugTracki ng = true;
s.trackLocal = true;

/* WARNI NG Changi ng any of the bel ow variables will cause drastic changes to how your visitor
data is collected. Changes should only be nmade when instructed to do so by your account
manager . */

s.visitorNanespace = "your Nanespace";

s.tracki ngServer="netrics.nysite.cont //Use only if using first party cookies

Measuring Video for Developers 45

s. tracki ngServer Secure="snetrics.nysite.conmt' //Use only if useing first party cookies in
conjunction with SSL
s.dc = '122';

/************************** PLLJG NS SEC‘I" O\l *************************/

/* Insert any plugins code you want to use here. */

/****************************** '\mJLES *****************************/

/* Insert the nedia nodul e tracking code here. */

HTML 5 Video

HTML 5 video is measured using JavaScript.

To measure HTML 5 video, follow the instructions provided in Using JavaScript to Track a Video Player to configure video
tracking using JavaScript. For example, add the Media Module to your s_code file, configure conversion variables, events, and

milestones, and so on.

As described in Track Video Player Events, you must manually track the HTML 5 video events. The HTML 5 specification
provides a large number of predefined event handlers you can use to manually track HTML 5 video. The following site provides
details on the HTML 5 video events:

http://www.w3.0rg/2010/05/video/mediaevents.html

Using these event handlers, you can make calls to open, play, stop, and close to measure video. The following code provides
some examples of using the HTML 5 video event handlers:
var vi deo = docunent. get El ement sByTagNanme("' vi deo')[0];

vi deo. play = function(e) {
s. Medi a. pl ay(medi aName, nedi alf f set, segnment Num segnent, segnentLength);

vi deo. pause = function(e) {
s. Medi a. st op(nmedi aNane, nedi aOf f set) ;

vi deo. onended = function(e) {
s. Medi a. cl ose(medi aNane) ;

}

Other Video Players

This section contains notes on measuring video in players that are not specifically defined in this guide.

. Many 3rd party Flash-based players are built on OSMF and can use the OSMF dynamic plug-in. Other players that expose a
JavaScript event interface can use the JavaScript media module.

o Open Source Media Framework (OSMF)
« Using JavaScript to Track a Video Player
o Custom Flash NetStream Player

« Brightcove

Custom Flash NetStream Player

Flash 10.3 introduced new functionality to the NetStream component that enables enhanced video tracking. If you are using a
custom Flash NetStream player you can enable the following variable to enable player tracking functionality similar to autoTrack.

s. Medi a. aut oTrackNet Streans = true

http://www.w3.org/2010/05/video/mediaevents.html

Measuring Video for Developers 46

The process you follow is similar to the process described in Flash Video Playback. You can modify these instructions to download
the correct Flash AppMeasurement library for your development library and configure video measurement.

See Measuring video consumption in Flash.

Brightcove
Brightcove provides an interface for 3rd party analytics solutions using an analytics SWF Flash component.
http://support.brightcove.com/en/docs/editing-settings-players-plug-ins-tab

Adobe provides an analytics SWF, AppMeasur enment Ext ensi on. swf , for this purpose. To complete a Brightcove integration
you need the following files:

File Instructions

Measur enent Ext ensi on. swf
App 1. Inthe Adobe Marketing Cloud, click Admin > Admin Console > Code Manager.

2. Select ActionScript (Flash/Flex), provide the requested information, and then click
Generate Code.

3. From the Component Files Tab, download AppMeasur enent Ext ensi on. swf .

XML Configuration File)))))
An XML configuration file is used to map the SiteCatalyst variables you want to use

for video, and define milestones. See the section below.

XML Configuration File

When using a dynamic OSMF implementation, you can use an XML config file to bind variables to OSMF metadata.
AppMeasurement uses the following variable binding syntax:

<vari abl e>{ nedi a. pl ayer. net adat a(nanespace, key) } </ vari abl e>
variable: The name of the variable you wish to set (for example, eVar6).

namespace: (Optional) The OSMF metadata namespace you want to use. If you do not specify a namespace, the AppMeasurement
OSMF plug-in uses the first matching key it locates in any namespace. When looking for keys, the plug-in looks first at
MediaElement metadata, then at MediaResource metadata.

key: The specific metadata value you want to use.

The following section contains a sample XML configuration file.
« ThetrackSeconds and ni | est one sections are optional. See Video Metrics.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

« Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

« Video Segment Views (Event): event 2

Map these variables to the appropriate a. medi a variable in the cont ext Dat aMappi ng section.

<config>
<account >nyr si d</ account >

http://www.adobe.com/devnet/video/articles/media-measurement-flash.html
http://support.brightcove.com/en/docs/editing-settings-players-plug-ins-tab

Measuring Video for Developers 47

<debugTr acki ng>t r ue</ debugTr acki ng>
<vi si t or Namespace>cor pl</vi si t or Nanespace>
<tracki ngServer>corpl. dl.sc.ontrdc. net</tracki ngServer >
<Medi a>
<aut oTrack>t rue</ aut oTr ack>
<trackM | est ones>25, 50, 75</trackM | est ones>
<trackVars>events, eVar 1, eVar 2, eVar 3, prop2</trackVar s>
<trackEvent s>event 1, event 2, event 3, event 4, event 5, event 6, event 7</trackEvent s>
<segnent ByM | est ones>t r ue</ segnent ByM | est ones>
<t rackUsi ngCont ext Dat a>t r ue</ t r ackUsi ngCont ext Dat a>
<cont ext Dat aMappi ng>
<a. medi a. nane>eVar 2, prop2</ a. medi a. name>
<a. nedi a. segnent >eVar 3</ a. nedi a. segnent >
<a. cont ent Type>eVar 1</ a. cont ent Type>
<a. medi a. ti nePl ayed>event 3</ a. medi a. ti mePl ayed>
<a. nedi a. vi ew>event 1</ a. nedi a. vi ew>
<a. nedi a. segnent Vi ew>event 2</ a. nedi a. segnent Vi ew>
<a. nedi a. conpl et e>event 7</ a. nedi a. conpl et e>
<a. nedi a. m | est ones>
<i tem nane="25">event 4</itenp
<i tem nane="50">event 5</i tenr
<i tem nanme="75">event 6</i tenr
</ a.nmedi a. m | est ones>
</ cont ext Dat aMappi ng>
</ Medi a>
</ confi g>

Be aware of the following if you are using Brightcove Players:

« Medi a. aut oTr ack supports externally loaded video players, such as Brightcove, that might not be instantiated when the
Flash creates the AppMeasurement instance. To recognize an external video player, Medi a. aut oTr ack periodically rechecks
for a video player if it does not initially find one.

o AppMeasurement tracks Brightcove video playback using the Brightcove video ID, prefixed with either Brightcove 2: or
Brightcove 3: (depending on the Brightcove API version). For example, a Brightcove 3 video ID of abc123667 gets a video
name of Brightcove 3:abc123667.

» AppMeasurement gets the video ID from the video DTO calling getCurrentVideo or getCurrentTitle.

« To improve video name readability, you can upload classifications that assign the video a friendly name. For example, Brightcove
3:abc123667 could be classified as On-line Auto Ad #1.

If you are already building a more complex Flash movie and using the Brightcove video player with your movie, you can also
implement AppMeasurement using the instructions in Flash Video Playback. This lets AppMeasurement detect the Brightcove
video player in your movie when it loads.

Manually Tagging a Video Player

All video players that do not support Autotrack must be manually tagged.

See What is Autotrack?.

Track Video Player Events

You can track media players by creating functions attached to the video player event handlers

This lets you call Medi a. open, Medi a. pl ay, Medi a. st op, and Medi a. cl ose at the appropriate times. For example:
Load: Call Medi a. open and Medi a. pl ay

Pause: Call Medi a. st op. For example, if a user pauses a video after 15 seconds, call s. Medi a. st op(" Vi deol", 15)

Buffer: Call Medi a. st op while the video buffers. Call Medi a. pl ay when playback resumes.

Measuring Video for Developers 48

Resume: Call Medi a. pl ay. For example, when a user resumes a video after initially playing 15 seconds of the video, call
s. Medi a. pl ay(" Vi deol", 15).

Scrub (slider): When the user drags the video slider, call Medi a. st op. When the user releases the video slider, call Medi a. pl ay.

End: Call Medi a. st op, then Medi a. cl ose. For example, at the end of a 100-second video, call
s. Medi a. st op(" Vi deol", 100), thens. Medi a. cl ose(" Vi deol").

To accomplish this,you can define four custom functions that you can call from the media player event handlers. The various
parameters passed into Medi a. open, Medi a. pl ay, Medi a. st op, and Medi a. cl ose come from the player. The following
pseudocode demonstrates how this might be done:

/*Call on video | oad*/

function startMvie(){
s. Medi a. open(nedi aNane, nedi aLengt h, medi aPl ayer Nan®) ;
pl ayMovi e() ;

/*Call on video resune from pause and slider rel ease*/
function playMvie(){
s. Medi a. pl ay(nedi aNane, nedi aOf f set, segment Num segnent, segmentLength);

}

/*Call on video pause and slider grab*/
function stopMvie(){
s. Medi a. st op(nmedi aNane, nedi aOf f set) ;

}

/*Call on video end*/
function endMvbvi e(){

st opMovi e();

s. Medi a. cl ose(nedi aNane) ;

}

JavaScript AutoTrack

The JavaScript media module for identifies all <embed> or <obj ect > tags in the page HTML. It then searches the data in each
tag to determine which media player, if any, is being used. If the player is Windows Media Player, Quicktime, or Real Player,
aut oTr ack can be used, though autoTrack for Windows media player works only with Internet Explorer. Manual tracking for
Windows Media Player is required to support all other browsers.

You must have the cl assi d attribute set on the object you want to track. The cl assi d is required to expose the event handlers
used by the Media Module to automatically track the video.

s. Medi a. autoTrack = true

Measuring Additional Metrics using Media.monitor

You can define a custom Medi a. noni t or method to track additional video metrics.

A custom Medi a. noni t or method gives you the most granular control over video tracking. AppMeasurement automatically
calls the Medi a. moni t or method in the following circumstances:

« Every second while the video is playing.

» When an autoTrack implementation, such as the OSMF plug-in, captures a player event like scrubbing, pausing or resuming,
end of video playback, etc.

» When a non-autoTrack (manual) implementation calls Medi a. open, Medi a. pl ay, Medi a. st op, or Medi a. cl ose.

Measuring Video for Developers 49

Use this functionality to monitor the status of each video that is currently playing. With it, you can setup additional variables
(Props, eVars, Events) and call Medi a. t r ack based on the current state of the video as it is playing.

s. Medi a. noni tor (s, nedia)
This method takes the following parameters:
s: The AppMeasurement instance.

media: An object with members providing the state of the video. These members include:

State Property Description

medi a. nane The name of the video given in the call to Medi a. open.

medi a. | ength The length of the video in seconds given in the call to Medi a. open.

medi a. openTi e A Date object set to the time video tracking started.

medi a. of f set The current offset into the video, in seconds.

medi a. per cent The current offset into the video, as a percentage of the video length ((media.offset /

media.length) * 100).

medi a. ti mePl ayed The total video playback time, in seconds. This includes replay time due to rewind, and
excludes time skipped by fast forwarding.

medi a. pl ayer Name The name of the media player given in the call to Medi a. open.

medi a. medi aEvent
The event that initiated the call to the Medi a. noni t or method. Options include the

following:

OPEN: The start of video playback. For a non-autoTrack (manual) implementation, this is
the first time Medi a. pl ay is called after calling Medi a. open.

PLAY: Video playback restarted.

STOP: Video playback stopped due to pause, seek forward or backwards, scrubbing started,
etc.

CLOSE: The end of video playback. For a non-autoTrack (manual) implementation, this is
when Medi a. cl ose is called.

MONITOR: A check of the video state, which occurs every second.

MILESTONE: A video milestone was reached, as defined by the Medi a. t r ackM | est ones
method. The nedi a. i | est one property identifies the specific milestone that was reached.

SECONDS: The playback time specified by medi a. t r ackSeconds has been reached.

medi a. event Fi rst Ti ne A boolean property. When set to true, indicates the medi a. medi aEvent occurred for the
first time. If media.mediaEvent = "MILESTONE" a true value indicates that this is the first
time to reach the video milestone identified in media.milestone.

medi a. m | est one
The milestone reached during video playback, as defined in the Medi a. t r ackM | est ones

method.
This property is only set when nedi a. nedi aEvent issetto" M LESTONE" .
medi a. pl ayer Player-specific data created by some autoTrack implementations.

medi a. pl ayer . net adat a Player-specific method for retrieving video metadata from the player.

Measuring Video for Developers 50

A custom Medi a. noni t or method should do similar to the following:

o Check the media object to see if this is a point where you want to customize your video tracking.

o Set custom props, eVars, and events to customize your tracking.

o Sets. Medi a. trackVars and s. Medi a. t r ackEvent s filters to match the custom props, eVars, and events you with to
track along with the video data.

o Call s. Medi a. track(nmedi a. nanme) to send off the video data collected up to the current point along with your custom
props, eVars, and events.

Define a method or function for Media.monitor

To create a custom Medi a. noni t or method you can set Medi a. noni t or to an anonymous function or a class method. The
anonymous function or class method you define should take the AppMeasurement instance and media object as shown in the
media monitor reference.

/1l JavaScript or Flash anonynous function exanple
s. Medi a. monitor = function (s, nmedia) {

/1Silverlight class nethod exanpl e
s. Medi a. noni tor = new AppMeasur enent _Medi a_Moni t or (myMedi aMoni tor);

/1 OSMF anonynous function exanpl e
s. Medi a. nonitor = function (s: Object, nedi a: bject) {

Media.monitor Code Sample

The following code sample demonstrates using Media.monitor to send custom variables.

/* Inmport line for ActionScript 3 */
i mport com ommi ture. AppMeasur enent ;

/* Uncomment for ActionScript 2 with Flash Player 8+ and commrent out other inport |ines */
/* inmport com ommiture. AS2. AppMeasur enent; */

/* Uncoment for ActionScript 2 with Flash Player 6, 7, or Lite and comment out other inport
lines */
/* inmport com ommiture. AS2. FPL. AppMeasur enent; */

var s:AppMeasurenment = new AppMeasurenent () ;

/* Uncoment for Flex and comment out addChild(s); */
/* rawChil dren. addChil d(s); */

addChi | d(s);

/* Specify the Report Suite ID(s) to track here */
s.account = "jdoe";

/* Turn on and configure debuggi ng here */

s. debugTracki ng = true;

s.trackLocal = true;

/* You nmy add or alter any code config here */
s. pageNane = "";

s.pageURL = "";

s. char Set = "UTF-8";

s.currencyCode = "USD';

. Medi a. aut oTr ack=t r ue;

. Medi a. segnent ByM | est ones=t r ue;

. Medi a.trackM | est ones="25, 50, 75";

. Medi a. trackVars="eVar 2, eVar 3, eVar 1, event s, prop51, pr op50";

. Medi a. trackEvent s="event 1, event 2, event 3, event 4, event 5, event 6, event 7";

nunnonon

/* Turn on and configure CickMap tracking here */
s.trackd ickMap = true;

Measuring Video for Developers

51

s.novielD = ;

/* WARNI NG Changi ng any of the bel ow variables will cause drastic changes

to how your visitor data is collected.

Changes shoul d only be nade

when instructed to do so by your account manager.*/

s.vi sitorNanespace = "corpl";

s.tracki ngServer = "corpl.dl.sc.ontrdc. net";

var tracked25: Bool ean
var tracked50: Bool ean
var tracked75: Bool ean
var fireRequest: Bool ean

s. Medi a. trackUsi ngCont ext Data = true;

s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. nane": "eVar 2",

"a. medi a. segnent": "eVar 3",
.content Type": "eVar 1",

a
a
a
a. nedi a. ti mePl ayed": "event 3",
a
a
a
a

. nedi a. view': "event 1",

. nedi a. segnent Vi ew': "event 2",
. medi a. conpl ete": "event 7",
.medi a. m | estones": {

25: "event 4",

50: "event 5",

75: "event 6"

s. Medi a. nonitor = function (s, nedia){

if ((nmedia. event == "M LESTONE") && (nedia.eventFirstTinme)) ({

if (media.mlestone == 25) {
s. prop51 = nedi a. nane+ "
fireRequest = true;

if (media.mlestone == 50) {
s. prop51 = nedi a. nane+ "
fireRequest = true;

if (media.mlestone == 75) {
s. prop51 = nedi a. nane+ "
fireRequest = true;

}

if (fireRequest) {
fireRequest = false;
sendRequest () ;

i f (medi a. event =="OPEN") {
S. prop50="Hone page"
sendRequest () ;

S. prop50=""

}
i f(medi a. event =="CLOSE") {

+"25% ;

+"509% ;

+"'75% ;

S. prop51=nedi a. nane+ " : " +"100%

sendRequest () ;
S. prop51=""

}

functi on sendRequest (){
s. Medi a. track(nedi a. nane) ;
}

Measuring Video for Developers

The following custom Medi a. moni t or method sets eVarl to the “series” key, eVar2 to the “season” key, and eVar3 to the
“episode” key in the http://www.corpl.com/ namespace using OSMF metadata:

s. Medi a. nonitor = function (s: Object, nedi a: Cbject) {

s.trackVars = "events, eVarl, eVar 2, eVar 3";
s.trackEvents = "event1, event2";
s.eVarl = nedi a. pl ayer. netadata("http://ww. corpl. com","series");
s.eVar2 = nedi a. pl ayer. netadata("http://ww. corpl. con","season");
s.eVar3 = nedi a. pl ayer. netadata("http://ww. corpl.conl”, "epi sode");
if (nmedia.medi aEvent == "OPEN') {

s.events = "event1";

s. Medi a. track(nmedi a. nane) ;
} else if (nmedia.nmedi aEvent == "CLCSE") {

s.events = "event2";

s. Medi a. track(nmedi a. nane) ;

}

The following example shows a Medi a. moni t or implementation in Silverlight:

s. Medi a. nedi a = new AppMeasur enent _Medi a_Mbni t or (myMedi aMoni tor) ;
I

/1l customvariables (Props, eVars, Events) are sent automatically on an OPEN event, and when
manual | y tracked here (in nmedia nonitor bel ow)
private void nyMedi ahVbni t or (AppMeasur enent s, AppMeasur enent _Medi a_State nedi a) {

i f (media.nmediaEvent == "OPEN') { //executes when the video opens
s. Medi a.trackVars = "eVarl, events";
s. Medi a. trackEvents = "event1";
s.events = "event1l";
s.eVarl = nedi a. nane;
s. Medi a. track(nedi a. nane) ;
}
i f (media.nedi aEvent == "CLOSE") { //executes when the video conpletes
.Medi a.trackVars = "eVarl, events";
. Medi a. trackEvents = "event 4";
.events = "event4";

.eVarl = nedi a. nane;
. Medi a. track(nedi a. nane) ;

nnunounuon

Media Module Variables

Media Module Variables

The following variables let you configure video measurement.

You must define values for the variables in the Required Variables table.

Additionally, to track events in your video player, you must enable autoTrack (for supported players) or implement custom

player event tracking using the open, play, stop, and close methods.

Variable

Medi a. t rackUsi ngCont ext Dat a

Medi a. cont ext Dat aMappi ng

Description

Syntax:
s. Medi a. trackUsi ngCont ext Data = true;

This option enables integrated video tracking. When t r ackUsi ngCont ext Data =
t r ue, the media module generates context data for media tracking, instead of the
legacy pev3 value used in previous versions of video measurement.

Use Medi a. cont ext Dat aMappi ng to map the context data to the selected eVars
and Events.

Defaults to f al se.

Syntax:

s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. nane": "eVar 2, prop2",
. medi a. segnent": "eVar 3",
.content Type": "eVar 1",
nmedi a. ti mePl ayed": "event 3",
medi a. view': "event 1",
. medi a. segnent Vi ew': "event 2",
. medi a. conpl ete": "event 7",
.medi a. m | estones”: {

25: "event 4",

50: "event 5",

75: "event 6"

}

) ¢

An object that defines variable mapping to eVars and Events that you want to use for

PP YE

video measurement.
The object must map the following fields:

a.media.name: (Required) Populates variables with the video name. Provide the eVar
that you selected to store the video name, and the Custom Insight Video variable
(s.prop) you want to use for video pathing. Provide the values in a comma-separated
list.

a.media.segment: (Optional) The eVar that you want to store the media segment
name.

a.contentType: (Optional) The eVar that you want to store the video value, which
contains visit and visitor tracking enabled to generate video visit and visitor reporting.
The variable you select is likely already used to store data such as article slide show or
product page

a.media.view: (Required) The Event that you want to count media views.

Media Module Variables

54

Variable

Medi a. trackVars

Medi a. trackEvent s

Description

a.media.segmentView: (Optional) The Event that you want to count segment views.
a.media.complete: (Optional) The Event that you want to count complete views.

a.media.timePlayed: (Optional, highly recommended) The numeric Event that you
want to store the number of video seconds played.

a.media.milestones: (Optional) An object that maps s.Media.trackMilestones
milestones to counter Events. Media.segmentByMilestones should be set to true if you
define milestones.

Ad tracking
To track ads, the following context data variables are available:

a.media.ad.name: (Required) Populates variables with the ad name. Provide the eVar
that you selected to store the ad name, and the Custom Insight Video variable (s.prop)
you want to use for pathing. Provide the values in a comma-separated list.

a.media.ad.pod: The position in the primary content the ad was played.
a.media.ad.podPosition: The position within the pod where the ad is played.

a.media.ad.CPM: The CPM or encrypted CPM (prefixed with a "~") that applies to
this playback.

a.media.ad.view: Works the same as a.media.view.

a.media.ad.clicked: Count the number of clicks for the ad (Media.click calls).
a.media.ad.timePlayed: Works the same as a.media.timePlayed.
a.media.ad.complete: Works the same as a.media.complete.
a.media.ad.segment: Works the same as a.media.segment.
a.media.ad.segmentView: Works the same as a.media.segmentView.
a.media.ad.milestones: Works the same as a.media.milestones.

a.media.ad.offsetMilestones: Works the same as a.media.offsetMilestones.

Syntax:

s. Medi a. trackVar s="event s, prop2, eVar 1, eVar 2, eVar 3";

A comma-separated list of all variables that are set in your video tracking code.
Syntax:

s. Medi a. t rackEvent s="event 1, event 2, event 3, event 4, event 5, event 6, event 7"

A comma-separated list of all events that are set in your video tracking code.

The following table contains optional variables.

Media Module Variables

55

Optional Variables

Variable

Medi a. aut oTr ack

Medi a. aut oTr ackNet St r eans

Medi a. conpl et eByCl oseOf f set

Medi a. conpl et ed oseOf f set Threshol d

Description

Syntax:
s. Medi a. aut oTrack = true

Enables automatic tracking for supported players. Supported players are as
follows:

« Open Source Media Framework (OSMF)

« FLVPlayback (Video players created by the import video wizard in Flash
Professional)

« Silverlight

» MediaDisplay

» MediaPlayback

o Brightcove API versions 2 & 3 (see Brightcove)

» Windows Media Player, Quicktime, or Real Player using JavaScript

If you are not using one of the above players you can use Media.open,
Media.play, Media.stop, and Media.close to track player events.

Syntax:
s. Medi a. aut oTr ackNet Streans = true

Flash 10.3 introduced new functionality to the NetStream component that
enables enhanced video tracking. If you are using a custom Flash NetStream
player you can enable this variable to enable functionality similar to autoTrack.
This method requires that videos are viewed in Flash 10.3 or later.

Syntax:
s. Medi a. conpl et eByCl oseOf fset = true

This setting lets you count a complete video view a few seconds before the
actual end of the video.

The event is sent based on the number of seconds specified in
conpl et ed oseCf f set Thr eshol d. This lets you measure completes in
video players that never report an offset equal to the length of the video.

By default, this value is set to true and the threshold is set to 1 second. With
these defaults the complete event is sent 1 second before the end of the video.

Syntax:
s. Medi a. conpl et eCl oseOf fset Threshold = 1

This threshold lets you count a complete video view a few seconds before the
actual end of the video. Medi a. conpl et eByd osef f set must be set to
true to use this threshold.

The integer value you supply determines how far off in seconds the offset can
be from the length of the video at close and still count as a complete. This lets
you measure completes in video players that never report an offset equal to
the length of the video.

Media Module Variables

56

Variable

Medi a. pl ayer Nane

Medi a. t rackSeconds

Medi a. trackM | est ones

Medi a. trackOf f set M | est ones

Description
The default threshold is 1 second.

Syntax:
s. Medi a. pl ayer Nane = " Custom Pl ayer Nane"

Specifies a custom video player name.

s. Medi a. trackSeconds = 15

Defines the interval, in seconds, for sending video tracking data to Adobe data
collection servers while the video is playing. The value must be set in
increments of 5 seconds.

Enabling Medi a. t r ackSeconds triggers only the events that are defined in
Media.contextDataMapping. To send additional variables outside of those
specified for video measurement, you must use Media.Monitor

Tracks milestones as percentage of the video length.

Syntax:
s. Medi a.trackM | est ones = "25,50, 75";

Defines the interval, as a percentage of the video length, for sending video
tracking data to Adobe data collection servers. Specify the milestones as a
comma-separated list of whole numbers. For example: 10 = 10%, 23 = 23%).

Because these milestones are fixed points in the video, if a visitor views past
the 10% milestone, then rewinds and passes the 10% milestone again, the
media module sends the tracking data multiple times. Similarly, if a visitor
fast forwards past a milestone, the media module does not send the tracking
data for that milestone.

Enabling Medi a. t rackM | est ones triggers only the events that are defined
in Medi a. cont ext Dat aMappi ng. To send additional variables outside of
those specified for video measurement, you must use Medi a. noni t or .

Tracks milestones as seconds elapsed from the beginning of the video.

Syntax:
s. Medi a.trackOf fset M | est ones = "20, 40, 60";

Defines the interval, as seconds elapsed from the beginning of the video, for
sending video tracking data to Adobe data collection servers. Specify the
milestones as a comma-separated list of whole numbers. For example: 20 =
20 seconds, 40 = 40 seconds).

Because these milestones are fixed points in the video, if a visitor views past

the 20 seconds milestone, then rewinds and passes the 20 seconds milestone
again, the media module sends the tracking data multiple times. Similarly, if
a visitor fast forwards past a milestone, the media module does not send the

tracking data for that milestone.

Media Module Variables

57

Variable

Medi a. segnent ByM | est ones

Medi a. segnent ByOf f set M | est ones

Ad Tracking Variables

Description

Enabling Medi a. trackCf f set M | est ones triggers only the events that
are defined in Medi a. cont ext Dat aMappi ng. To send additional variables
outside of those specified for video measurement, you must use

Medi a. noni t or.

Syntax:
s. Medi a. segment ByM | est ones = true;

Automatically generates the segment name, segment number, and segment
length data, based on the length of the media and the milestones specified in
Medi a. trackM | est ones.

Segmenting by milestones is the only way to define segments when using
autoTrack.

Defaults to f al se.

Syntax:
s. Medi a. segnent ByOf f set M | est ones = true;

Automatically generates the segment name, segment number, and segment
length data, based on the length of the media and the milestones specified in
Medi a. trackOf f set M | est ones.

Segmenting by milestones is the only way to define segments when using
autoTrack.

Defaults to f al se.

These variables are used to send ad information in conjunction with the openAd method. See VAST Video Ad Tracking.

Variable

Medi a. adTr ackSeconds

Medi a. adTr ackM | est ones

Description

s. Medi a. adTr ackSeconds = 15

Defines the interval, in seconds, for sending video ad tracking data to Adobe
data collection servers while the video is playing. The value must be set in
increments of 5 seconds.

Enabling Medi a. adTr ackSeconds triggers only the events that are defined
in Medi a. cont ext Dat aMappi ng. To send additional variables outside of
those specified for video measurement, you must use Medi a. Moni t or .

Tracks ad milestones as percentage of the ad length.

Syntax:
s. Medi a. adTrackM | est ones = " 25, 50, 75";

Media Module Variables

58

Variable

Medi a. adTrackCf f set M | est ones

Medi a. adSegnent ByM | est ones

Medi a. adSegnent ByOf f set M | est ones

Description

Defines the interval, as a percentage of the ad length, for sending ad tracking
data to Adobe data collection servers. Specify the milestones as a
comma-separated list of whole numbers. For example: 10 = 10%, 23 = 23%).

Because these milestones are fixed points in the ad, if a visitor views past the
10% milestone, then rewinds and passes the 10% milestone again, the media
module sends the tracking data multiple times. Similarly, if a visitor fast
forwards past a milestone, the media module does not send the tracking data
for that milestone.

Enabling Medi a. adTr ackM | est ones triggers only the events that are
defined in Medi a. cont ext Dat aMappi ng. To send additional variables
outside of those specified for video measurement, you must use

Medi a. noni t or.

Tracks ad milestones as seconds elapsed from the beginning of the ad.

Syntax:
s. Medi a. adTrackOf fset M | est ones = " 20, 40, 60";

Defines the interval, as seconds elapsed from the beginning of the ad, for
sending ad tracking data to Adobe data collection servers. Specify the
milestones as a comma-separated list of whole numbers. For example: 20 =
20 seconds, 40 = 40 seconds).

Because these milestones are fixed points in the ad, if a visitor views past the

20 seconds milestone, then rewinds and passes the 20 seconds milestone again,
the media module sends the tracking data multiple times. Similarly, if a visitor
fast forwards past a milestone, the media module does not send the tracking

data for that milestone.

Enabling Medi a. adTr ackCf f set M | est ones triggers only the events that
are defined in Medi a. cont ext Dat aMappi ng. To send additional variables
outside of those specified for video measurement, you must use

Medi a. noni t or.

Syntax:
s. Medi a. adSegnent ByM | est ones = true;

Automatically generates the segment name, segment number, and segment
length data, based on the length of the media and the milestones specified in
Medi a. adTr ackM | est ones.

Segmenting by milestones is the only way to define segments when using
autoTrack.

Defaults to f al se.

Syntax:
s. Medi a. adSegnent ByOf f set M | est ones = true;

Media Module Variables

59

Variable

Description

Automatically generates the segment name, segment number, and segment
length data, based on the length of the media and the milestones specified in
Medi a. adTrackOf f set M | est ones.

Segmenting by milestones is the only way to define segments when using
autoTrack.

Defaults to f al se.

Media Module Methods 60

Media Module Methods

The media module methods are used to manually tracking player events and to track additional metrics that are not part of the
standard video reports.

If you are using Medi a. aut oTr ack and are not tracking additional metrics, you do not need to call any of these methods

directly. All arguments are required unless specified as optional.

Method Description

Medi a. open Syntax:
s. Medi a. open(medi aNane, medi aLengt h, nedi aPl ayer Nane)

Prepares the media module to collect video tracking data. This method takes the following
parameters:

mediaName: (required) The name of the video as you want it to appear in video reports.
mediaLength: (required) The length of the video in seconds.

mediaPlayerName: (required) The name of the media player used to view the video, as
you want it to appear in video reports.

Medi a. openAd Syntax:
s. Medi a. openAd(nane, | engt h, pl ayer Nane, par ent Nane, par ent Pod, par ent PodPosi ti on, GP\)

Prepares the media module to collect ad tracking data. This method takes the following
parameters:

name: (required) The name or ID of the ad.

length: (required) The length of the ad.

playerName: (required) The name of the media player used to view the ad.
parentName: The name or ID of the primary content where the ad is embedded.
parentPod: The position in the primary content the ad was played.
parentPodPosition: The position within the pod where the ad is played.

CPM: The CPM or encrypted CPM (prefixed with a "~") that applies to this playback.

Medi a. cl i ck Syntax:
s. Medi a. cl i ck(nane, of f set)

Track when an ad is clicked in a video. This method takes the following parameters:
name: The name of the ad. This must match the name used in Medi a. openAd.

offset: The offset into the ad when the click occurred.

Medi a. cl ose Syntax:
s. Medi a. cl ose(nmedi aNane)

Ends video data collection and sends information to Adobe data collection servers. Call
this method at the end of the video. This method takes the following parameters:

mediaName: The name of the video. This must match the name used in Media.open.

Media Module Methods

61

Method

Medi a. conpl et e

Medi a. pl ay

Medi a. st op

Description

Syntax:
s. Medi a. conpl et e(nane, of f set)

This method manually tracks a complete event. This method is used when you need to
trigger events using special logic that can't be handled using
Medi a. conpl et eByCd oseO f set .

For example, if you are measuring a live stream that has no defined end, you might trigger
a complete after a user views a live stream for X seconds. You might measure a complete
using a percentage calculation based on the length and type of content. This method takes
the following parameters:

mediaName: The name of the video. This must match the name used in Media.open.

mediaOffset: The number of seconds into the video when the complete event should be
sent. Specify the offset based on the video starting at second zero. If your media player
tracks using milliseconds, make sure the value is converted to seconds before you call
Media.complete.

If you plan to call complete manually, set s. Medi a. conpl et eByCl oseOf f set =
f al se to disable automatic triggering of the complete event.

Syntax:
s. Medi a. pl ay(nan®, of f set, segnent Num segnent, segnent Lengt h)

Call this method anytime a video starts playing. When using manual video measurement,
you can provide the current segment data when sending video measurement data.

If your player changes from one segment to another, for whatever reason, you should
call Media.stop before calling Media.play again for the new segment.

This method takes the following parameters:
mediaName: The name of the video. This must match the name used in Media.open.

mediaOffset: The number of seconds into the video that play begins. Specify the offset
based on the video starting at second zero. If your media player tracks using milliseconds,
make sure the value is converted to seconds before you call Media.play.

segmentNum: (Optional) The current segment number, which marketing reports use to
order the display of segments in reports. The segmentNum parameter must be greater
than zero.

segment: (Optional) The current segment name.
segmentLength: (Optional) The current segment length, in seconds.

For example:

s. Medi a. pl ay("My Vi deo", 1800, 2, "Second Quarter", 1800)
s. Medi a. pl ay("My Video",0,1,"Preroll", 30)

Syntax:
s. Medi a. st op(medi aNane, nmedi a0 f set)

Media Module Methods

62

Method

Medi a. noni t or

Description

Tracks a stop event (stop, pause, etc.) for the specified video. This method takes the
following parameters:

mediaName: The name of the video. This must match the name used in Media.open.

mediaOffset: The number of seconds into the video that the stop or pause event occurs.
Specify the offset based on the video starting at second zero.

Syntax:
s. Medi a. noni tor (s, nedia)

Silverlight Syntax:
s. Medi a. noni t or = new AppMeasur enrent _Medi a_Moni t or (myMedi aMoni tor) ;

The Silverlight app media monitor implements the Objective-C delegate design pattern.
myMedi aMoni t or is a class method that takes the s and nedi a parameters.

Use this method to send additional video metrics. You can setup additional variables
(Props, eVars, Events) and send them using Medi a. t r ack based on the current state of
the video as it is playing.

See Measuring Additional Metrics using Media.monitor.
This method takes the following parameters:
s: The AppMeasurement instance (or JavaScript s object).

media: An object with members providing the state of the video. These members include:

« media.name: The name of the video. This must match the name used in Media.open.
« media.length: The length of the video in seconds given in the call to Media.open.
« media.playerName: The name of the media player given in the call to Media.open.

» media.mediaEvent: A string containing the event name that caused the monitor call.
These events are:

« OPEN: When playback is first observed through Medi a. aut oTr ack or a call to
Medi a. pl ay.

o CLOSE: When playback ends at the completion of the video through
Medi a. aut oTr ack or at a call to Media.close.

o PLAY: When playback resumes after being paused or scrubbing through
Medi a. aut oTr ack or a second call to Medi a. pl ay.

« STOP: When playback stops due to a pause of the beginning of scrubbing through
Media.autoTrack or a call to Media.stop.

+ MONITOR: When our automatic monitoring checks the state of the video while it's
playing (every second).

« SECONDS: At the second interval defined by the Media.trackSeconds variable.

o MILESTONE: At the milestones defined by the Media.trackMilestones variable.

» media.openTime: An NSDate object containing data about when Media.open was
called.

« media.offset: The current offset, in seconds, (actual point in the video) into the video.
The offset starts at zero (the first second of the video is second 0).

« media.percent: The current percentage of the video that has played, based on the video
length and the current offset.

« media.timePlayed: The total number of seconds played so far.

Media Module Methods

63

Method

Medi a. track

Description

« media.eventFirstTime: Indicates if this was the first time this media event was called
for this video.

Syntax:
s. Medi a. t rack(medi aNane)

Immediately sends the current video state, along with any Medi a. t r ackVar s and
Medi a. tr ackEvent s you've defined. This method is used within Medi a. noni t or .

See Measuring Additional Metrics using Media.monitor.

CallMedi a. open and Medi a. pl ay on the video before calling this method. This method
takes the following parameter:

mediaName: The name of the video. This must match the name used in Media.open.
This method is the only way to send additional variables while the video is playing.

This method resets the seconds interval and percent milestone counters to zero to prevent
multiple tracking hits.

VAST Video Ad Tracking 64

VAST Video Ad Tracking

AppMeasurement provides support to track ads displayed in videos.

Ads are tracked similar to primary content videos, with additional parameters tracked with them to associate them with the
primary content in which they are embedded. The extra parameters are:

« Primary content video name - The identifier for the primary content video in which the ad is tracked.
» Ad pod and pos position - The pod and position the ad is which the ad is being played in the primary content video.
o Ad CPM - The CPM or encrypted CPM for this ad play

Otherwise ads are tracked using the same methods used to track videos. The Ad ID replaces the video name when tracking ads.

This example shows a method of tracking a VAST ad when no ad length is available. If the ad length is available, you can remove
the manual conpl et e call and include the length in the call to openAd.

//stop primary video

s. Medi a. stop("My Primary Video", 60) //replace 60 with offset |ocation where ad was di spl ayed
/lplay the ad

s. Medi a. openAd(" My VAST Ad", -1, "Freewheel","My Primary Video","Preroll",0);
s. Medi a. pl ay("My VAST Ad", 0);

/1 30 seconds |ater or whenever the Freewheel ad player stops playing

s. Medi a. conpl ete("My VAST Ad", 30);

s. Medi a. stop("My VAST Ad", 30);

s. Medi a. cl ose("My VAST Ad");

//start primary video

s. Medi a. pl ay("My Primary Video", 60)

Step Task Description

1 Stop the pri tent and start the ad.
op the primaty confentand STt e 4% | call's. Medi a. stop("My Primary Video"...), then call

s. Medi a. openAd(" My VAST Ad"...) asshowinthecode example
above. Since the ad length is unknown, - 1 is passed as the length. This
means that you will need to manually call complete.

In the case where the video ad is an overlay, you can call openAd
without stopping the primary video.

2 Play the ad. s. Medi a. pl ay(" M/ VAST Ad", 0)
3 When the ad finishes, call lete, th
stopen € ac Tiishes, call Compiete, TeN | 1 clude the ad length as the offset parameter for both calls. Offset

represents the seconds into the content where the media event occurs,
starting from 0.

s. Medi a. conpl ete("My VAST Ad", 30);

s. Medi a. stop("My VAST Ad", 30);

4 Close the ad)
s. Medi a. cl ose("My VAST Ad");

5 Resume the primary video. s. Medi a. pl ay("My Primary Video", 60) //replace 60 with
the actual offset |ocation where the ad was di spl ayed

This same process can be used to track any type of ad, it is not restricted to ads that follow the VAST standard.

See openAd in Media Module Methods and the Ad Tracking Variables.

VAST Video Ad Tracking 65

Additional ContextData Mapping for Ad Tracking

The following variables must be configured in the s. Medi a. cont ext Dat aMappi ng object to track ad metrics:

s. Medi a. cont ext Dat aMappi ng = {
"a. medi a. nane": "eVar 2, prop2",
. medi a. segnent": "eVar 3",
.content Type": "eVar1",
nmedi a. ti nePl ayed": "event 3",
nmedi a. view': "event 1",
. medi a. segnent Vi ew': "event 2",
. medi a. conpl ete": "event 7",
.media.mlestones":{ //optionally replace with trackOffsetM | estones
25: "event 4",
50: "event 5",
75:"event 6"

ppppEPEE

/lad tracking vari abl es

"

a. nedi a. ad. nane": "eVar 4",
"a.nedi a. ad. pod": "eVar 5",
"a. nmedi a. ad. podPosi tion": "eVar6",
"a.nedi a.ad. CPM': "eVar 7, prop7",
"a. nedi a. ad. cli cked": "event 14",
"a.nedi a. ad. segnent ": "eVar 8",
"a.nedia.ad.tinmePl ayed": "event 10",
"a. medi a. ad. view': "event 8",
"a.nedi a. ad. segnent Vi ew': "event 9",
"a.nedi a. ad. conpl et e": "event 14",
"a.nmedia.ad. mlestones":{ //optionally replace with trackO fsetM | estones
25:"event 11",
50: "event 12",
75:"event 13"
}
i
contextData Destination Description
a.media.ad.name eVar w/ full subrelations, visits, and | This will be the name or ID of the ad
visitors
a.media.ad.pod eVar The position in the primary content the ad was
played
a.media.ad.podPosition eVar The position within the pod where the ad is played
a.media.ad. CPM currency event The CPM or encrypted CPM (prefixed with a "~")
that applies to this playback
a.media.ad.view counter event Works the same as a.media.view
a.media.ad.clicked counter event Count the number of clicks for the ad (Media.click
calls)
a.media.ad.timePlayed counter event Works the same as a.media.timePlayed
a.media.ad.complete counter event Works the same as a.media.complete
a.media.ad.segment eVar Works the same as a.media.segment
a.media.ad.segmentView counter event Works the same as a.media.segmentView
a.media.ad.milestones counter event Works the same as a.media.milestones

a.media.ad.offsetMilestones counter event Works the same as a.media.offsetMilestones

Measuring Video FAQ 66

Measuring Video FAQ

This topic provides answers to common questions.

What is Autotrack?

To effectively measure video, the media module needs a way to find out what is happening in your player. For example, when
a user starts playing a video, the media module needs to start counting seconds viewed. If the user pauses the video, the media
module must also pause the count as well.

If AutoTrack is supported for your player, it means that the code to monitor what is happening in your player is already present
in the media module. For a developer, this means that you do not need to call open, play, stop, or close since the media module
can already track these events.

If AutoTrack is not supported for your player, it means you need to add code that tells the media module when events occur in
your player (using the open, play, stop, and close methods). When a user starts playing a video, you need to call the play method
so the media module starts counting seconds viewed. If the user pauses the video, you need to call stop so the count is paused.
This is typically performed using event handlers that are exposed by your player. Additional details are provided on how to do
this in the Implementation Guides for video players that do not support autotrack.

What is the Media Module? Is it different from AppMeasurement?

The media module refers to the Media class that is part of the AppMeasurement libraries. All video measurement functionality
is part of the media module, meaning that you reference video measurement variables and methods using the Media prefix. For
example, If s is the name of your JavaScript object or AppMeasurement instance, reference media module components using
the s.Media prefix.

For JavaScript, the media module must be downloaded and included separately. For all other languages the media module is
part of the core AppMeasurement library.

The media module is implemented to be as identical as possible across all AppMeasurement libraries.

What is Media.monitor?

Media monitor lets you send additional metrics and perform other actions during playback. To use Medi a. moni t or , you define
a function that is automatically called:

« Every second while the video is playing.

» When an autoTrack implementation, such as the OSMF plug-in, captures a player event like scrubbing, pausing or resuming,
end of video playback, etc.

« When a non-autoTrack (manual) implementation calls Medi a. open, Medi a. pl ay, Medi a. st op, or Medi a. cl ose.

Your function is provided a media object that contains details about the video state, including the event that triggered the call,
where playback is occurring, and so on. You can then send additional metrics based on this information. For details see Measuring
Additional Metrics using Media.monitor.

Can | a set video complete before the video reaches 100%?

Yes. For example, if you show credits at the end of your video, you might want to count a complete view before the end of the
video file. To do this, specify a value for s. Medi a. conpl et eCl oseCf f set Thr eshol d equal to the number of seconds before
the end that you want to send a complete event. For example, if you show 10 seconds of credits at the end of your video, you
could set s. Medi a. conpl et eCl oseOf f set Threshol d = 10.

For live events and video streams that do not have a defined end, you can call complete manually. See Media Module Methods.

Measuring Video FAQ 67

Do | have to dedicate a custom event to each milestone?

At a minimum, you should dedicate a custom event for video complete. Whether you send an event with the other milestones

depends on what you want to track.

If you want to view fallout for a single video, the Video Detail report is populated with the segment eVar and Segment View

event. This lets you see fallout without sending events for each milestone.

Sending in an event with each milestone lets you measure if a milestone is reached across multiple videos in one report. If you
want to view data about a milestone in other reports or across multiple videos, you should send an event. If you are interested
in viewing fallout for each video individually you typically don't need to send events for each milestone.

Migrating to Integrated Video Tracking 68

Migrating to Integrated Video Tracking

If you are currently tracking video using the legacy pev3 method, this section contains the information you need to migrate to
integrated video tracking.

About Integrated Video Tracking

Integrated video tracking collects video data using Custom Conversion Variables (eVars) and Events. Using these variables to
collect video data lets you integrate video data with other reporting data on your reports (Legacy pev3 video data was collected
using a custom variable that prevented integration). This change enhances your ability to analyze the impact of video on other
aspects of your on-line marketing strategy.

You can implement integrated video tracking on version 14 in preparation for version 15 migration. Integrated video tracking
can be implemented on version 14 or later, and is required by version 15.

The following list explains how integrated video tracking is affected as you migrate from version 14 to 15.

If you remain on version 14:

* You can use existing version 14 video implementation for existing version 14 reports.
* You can upgrade video implementation before moving to version 15. (To upgrade, contact your Account Manager.)
« You will not have access to any of the new version 15 features, video or otherwise.

If you migrate to version 15

« To track/view any new video data, you must re-implement video module.

* You can view previous video data by logging into version 14, but after the upgrade to v.15, no video data will be processed
using version 14 platform.

« No integration of version 14 video data with new data collected in version 15.
Custom solutions created by Consulting Group

« Custom solutions might not require immediate re-implementation if moving to version 15, but re-implementation is required
for all new features.

Migrating for Web Analysts

For a Web analyst, migrating to integrated video tracking is similar to defining a new implementation. Complete the instructions
defined in Measuring Video for Web Analysts and then fill out the Video Implementation Worksheet to give to your developer.
You developer can use the information in this worksheet to migrate your existing implementation.

Flash, Silverlight, and JavaScript Migration Guide

Complete the steps in the following list to migrate your video tracking solution to the new integrated solution. After you complete
these migration steps, you can recompile and test the solution. Sample implementations are available in these Measuring Video
for Developers sections:

o ActionScript Sample Code
o JavaScript Sample Code
o Silverlight Sample Code

You can reference the following sections as you migrate:

o How Video Measurement Works

Migrating to Integrated Video Tracking 69

» Media Module Methods
« Media Module Variables
o Measuring Additional Metrics using Media.monitor

1. Update the AppMeasurement Libraries or Media Module
2. Map Conversion Variables and Events

3. Configure Milestones

4. Update Method Calls

Update the AppMeasurement Libraries or Media Module

Download the latest AppMeasurement libraries from Code Manager to replace your existing libraries. For specific instructions,
see the section for your player in Measuring Video for Developers.

Map Conversion Variables and Events

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

 Video Name (eVar): eVar 2

« Video Name (Prop): pr op2

« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

» Video Segment Views (Event): event 2

Complete the following to map conversion variables and events:

1. Addthes. Medi a. t rackUsi ngCont ext Dat a variable and set it to true:
s. Medi a. trackUsi ngCont ext Data = true;

2. Addthes. Medi a. cont ext Dat aMappi ng variable and map the parameters it contains with the SiteCatalyst variables and
events you selected:

s. Medi a. trackUsi ngContextData = true
s. Medi a. cont ext Dat aMappi ng = {
"a. nedi a. name": "eVar 2, prop2",
. medi a. segnent " : "eVar 3",
.content Type": "eVar1l",
nmedi a. ti nePl ayed": "event 3",
. medi a. view': "event 1",
. medi a. segnent Vi ew': "event 2",
. nmedi a. conpl ete": "event 7"

LoD DD

Configure Milestones

If the web analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:
Number of seconds between measurement calls (increments of 5): 30

Milestones to track (as a % of video length): 25% 50% 75%

Migrating to Integrated Video Tracking 70

Divide each video into segments based on:

Review Video Metrics then complete the following to define the collection interval:

L.

(Optional) To track using seconds, add the following:
s. Medi a. trackSeconds = 30;

2. (Optional) To track using milestones, add additional milestone events to the milestones parameter of your contextDataMapping

variable:

s. Medi a. trackUsi ngCont ext Data = true
s. Medi a. cont ext Dat aMappi ng = {

a. medi a. nane": "eVar 2, prop2",
"a. medi a. segnent": "eVar 3",
"a.content Type": "eVar 1",
"a.nedia.tinmePl ayed": "event 3",
"a.nedia.view': "event 1",

"a. medi a. segnent Vi ew': "event 2",
"a. medi a. conplete": "event 7",
"a.nmedia.mlestones": {

25: "event4",

50: "event5",

75: "event 6"

}

ks

s. Medi a. trackM | estones = "25, 50, 75";

This example measures an event for the 25%, 50%, and 75% milestones. Each milestone you track must also be specified in
trackM | est ones.

You can also track using offset milestones instead:

"a.nmedia. mlestones": {
30: "event4", // 30 seconds fromstart of video
60: "event5", // 60 seconds fromstart of video
120: "event 6" // 120 seconds from start of video

4 }
si Medi a. trackOf f set M | est ones = " 30, 60, 120";

This example measures an event 30, 60, and 120 seconds from the start of the video. Each offset milestone you track must
also be specified int rackCf f set M | est ones.

3. You can use segment ByM | est ones to have the media module create segments automatically based on your milestones.
Segnent ByM | est ones = true;
If you do not enable segnment ByM | est ones to define segments, you must use a manual implementation (notaut oTr ack)
and send in the segment details with Medi a. pl ay. If the web analytics team has defined segments to track, you can define
milestones that correspond to each segment then enable segment ByM | est ones.

Update Method Calls

If you are using nmedi a. Aut oTr ack and you do not have a custom Medi a. moni t or method, you do not need to update any

methods.

1. Review calls to Medi a. noni t or . Compare the variables you were previously sending using Medi a. moni t or with the

variables you mapped in Medi a. cont ext Dat aMappi ng. You might be able to reduce or eliminate calls to this method if
the video variables you were previously reporting are mapped in Medi a. cont ext Dat aMappi ng.

(manual tracking only) If you are manually tracking video, you can optionally update each invocation of Medi a. pl ay to

report video segment data.
See Media Module Methods.

Migrating to Integrated Video Tracking 71

OSMF Migration Guide

Complete the steps in the following list to migrate your video tracking solution to the new integrated solution. After you complete
these migration steps, you can recompile and test the solution. Sample implementations are available in these sections:

o Dynamic Implementation
o Custom Dynamic Implementation
o Static Implementation

You can reference the following sections as you migrate:

e How Video Measurement Works

e Media Module Methods

e Media Module Variables

o Measuring Additional Metrics using Media.monitor

Update the OSMF AppMeasurement Libraries

Download the latest AppMeasurement libraries from Code Manager to replace your existing libraries. For specific instructions,
see Download the Media Module for OSMF.

Update the XML Configuration File

You need to add the following to update your XML configuration for integrated video tracking:

«t rackUsi ngCont ext Dat a and cont ext Dat aMappi ng
etrackM | est ones

See the following section for details and an example.

XML Configuration File

When using a dynamic OSMF implementation, you can use an XML config file to bind variables to OSMF metadata.
AppMeasurement uses the following variable binding syntax:

<vari abl e>{ nedi a. pl ayer. net adat a(nanespace, key) } </ vari abl e>
variable: The name of the variable you wish to set (for example, eVar6).

namespace: (Optional) The OSMF metadata namespace you want to use. If you do not specify a namespace, the AppMeasurement
OSMEF plug-in uses the first matching key it locates in any namespace. When looking for keys, the plug-in looks first at
MediaElement metadata, then at MediaResource metadata.

key: The specific metadata value you want to use.

The following section contains a sample XML configuration file.
« ThetrackSeconds and ni | est one sections are optional. See Video Metrics.

If the Web Analytics team filled out the Video Implementation Worksheet, you might have a list similar to the following:

» Video Name (eVar): eVar 2
« Video Name (Prop): pr op2
« Segments (eVar): eVar 3

« Content Type (eVar): eVar 1

Migrating to Integrated Video Tracking

72

« Video Time (Event): event 3

« Video Views (Event): event 1

« Video Completes (Event): event 7

« Video Segment Views (Event): event 2

Map these variables to the appropriate a. medi a variable in the cont ext Dat aMappi ng section.

<config>

<account >nyr si d</ account >

<debugTr acki ng>t r ue</ debugTr acki ng>

<vi si t or Namespace>cor pl</vi si t or Nanespace>

<tracki ngServer >cor pl. d1. sc. ontrdc. net </ tracki ngServer >

<Medi a>

<aut oTrack>t rue</ aut oTr ack>

<trackM | est ones>25, 50, 75</trackM | est ones>

<trackVars>events, eVar 1, eVar 2, eVar 3, prop2</trackVar s>

<trackEvent s>event 1, event 2, event 3, event 4, event 5, event 6, event 7</ tr ackEvent s>
<segnent ByM | est ones>t r ue</ segnent ByM | est ones>

<trackUsi ngCont ext Dat a>t rue</t rackUsi ngCont ext Dat a>

<cont ext Dat aMappi ng>

<a.
<a.
<a.
<a.
<a.
<a.
<a.
<a.

nedi a. nane>eVar 2, pr op2</ a. nedi a. nane>

nmedi a. segnent >eVar 3</ a. medi a. segnent >
cont ent Type>eVar 1</ a. cont ent Type>

nedi a. ti mePl ayed>event 3</ a. nedi a. ti nePl ayed>
nmedi a. vi ew>event 1</ a. nedi a. vi ew>

nmedi a. segnment Vi ew>event 2</ a. nedi a. segnent Vi ew>
nmedi a. conpl et e>event 7</ a. nedi a. conpl et e>
nmedi a. m | est ones>

<i tem nane="25">event 4</itenr

<i tem nanme="50">event 5</itenp

<i tem name="75">event 6</i tenr

</ a.nedi a. m | est ones>
</ cont ext Dat aMappi ng>

</ Medi a>
</ confi g>

	Contents
	Measuring Video in Adobe Analytics
	How Video Measurement Works
	Video Metrics

	Measuring Video for Web Analysts
	Video Reports
	Video Overview Report
	Video Detail Report
	Video Daypart

	Video Configuration
	Video Implementation Worksheet

	Measuring Video for Developers
	Flash Video Playback
	Download AppMeasurement for Flash
	Add the AppMeasurement for Flash Library to a Project
	Configure AppMeasurement
	Map Analytics Variables and Events
	Configure Milestones
	Track Player Events Using AutoTrack
	Test Your Video Measurement Code
	ActionScript Sample Code

	Open Source Media Framework (OSMF)
	Download the Media Module for OSMF
	Dynamic Implementation
	Troubleshooting a Dynamic OSMF Implementation

	Custom Dynamic Implementation
	OSMF Metadata

	Static Implementation
	Map Analytics Variables and Events
	Configure Milestones
	Track Player Events Using AutoTrack

	Using OSMF Metadata to Override a Video Name

	Apple iOS
	Download the Media Module for iOS
	Add the iOS Media Module to a Project
	Map Conversion Variables and Events
	Configure Milestones
	Track Player Events Using AutoTrack
	iOS Sample Code

	Android
	Silverlight
	Download the Media Module for Silverlight
	Add the Silverlight Media Module to a Project
	Add Media Module Code

	Map Conversion Variables and Events
	Configure Milestones
	Track Player Events Using AutoTrack
	Using the setInterface Method
	Silverlight Sample Code

	Using JavaScript to Track a Video Player
	Download the Media Module for JavaScript
	Add the JavaScript Media Module to a Web Page
	Map Analytics Variables and Events
	Configure Milestones
	Track Video Player Events
	JavaScript Sample Code

	HTML 5 Video
	Other Video Players
	Manually Tagging a Video Player
	Track Video Player Events

	Measuring Additional Metrics using Media.monitor

	Media Module Variables
	Media Module Methods
	VAST Video Ad Tracking
	Measuring Video FAQ
	Migrating to Integrated Video Tracking
	Migrating for Web Analysts
	Flash, Silverlight, and JavaScript Migration Guide
	Update the AppMeasurement Libraries or Media Module
	Map Conversion Variables and Events
	Configure Milestones
	Update Method Calls

	OSMF Migration Guide
	Update the OSMF AppMeasurement Libraries
	Update the XML Configuration File

