표준 SQL 쿼리 외에도 Adobe Experience Platform Query Service 을 사용하여 쿼리 쓰기 지원 Experience Events. 경험 이벤트는 XDM(Experience Data Model) ExperienceEvent 클래스로 표시되며, 이 클래스는 사용자가 웹 사이트 또는 서비스와 상호 작용할 때 시스템의 변경할 수 없고 집계되지 않은 스냅샷을 캡처하므로 시간 도메인 분석에 사용할 수 있습니다.
XDM 및 Experience Events 은 XDM System 개요. 결합 Query Service with Experience Events를 사용하면 사용자 간의 행동 트렌드를 효과적으로 추적할 수 있습니다. 다음 문서에서는 Experience Events.
다음 예제에서는 지정된 날짜 범위에서 날짜별로 그룹화된 이벤트의 트렌드 보고서를 만듭니다. 특히, A, B 및 C로 다양한 분석 값을 합산한 다음 파카를 본 횟수를 합합니다.
에 있는 타임스탬프 열 Experience Event 데이터 세트는 UTC입니다. 다음 예제에서는 from_utc_timestamp()
타임스탬프를 UTC에서 EDT로 변환하는 함수입니다. 그런 다음 를 사용합니다 date_format()
날짜를 나머지 타임스탬프와 격리하는 함수입니다.
SELECT
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
CASE
WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas'
THEN 1
ELSE 0
END) as viewedParkas
FROM your_analytics_table
WHERE TIMESTAMP >= to_timestamp('2019-03-01') AND TIMESTAMP <= to_timestamp('2019-03-31')
GROUP BY Day
ORDER BY Day ASC, pageViews DESC;
Day | pageViews | A | B | C | viewedParkas
-------------+-----------+--------+-------+---------+--------------
2019-03-01 | 55317.0 | 8503.0 | 804.0 | 1578.0 | 73
2019-03-02 | 55302.0 | 8600.0 | 854.0 | 1528.0 | 86
2019-03-03 | 54613.0 | 8162.0 | 795.0 | 1568.0 | 100
2019-03-04 | 54501.0 | 8479.0 | 832.0 | 1509.0 | 100
2019-03-05 | 54941.0 | 8603.0 | 816.0 | 1514.0 | 73
2019-03-06 | 54817.0 | 8434.0 | 855.0 | 1538.0 | 76
2019-03-07 | 55201.0 | 8604.0 | 843.0 | 1517.0 | 64
2019-03-08 | 55020.0 | 8490.0 | 849.0 | 1536.0 | 99
2019-03-09 | 43186.0 | 6736.0 | 643.0 | 1150.0 | 52
2019-03-10 | 48471.0 | 7542.0 | 772.0 | 1272.0 | 70
2019-03-11 | 56307.0 | 8721.0 | 818.0 | 1571.0 | 81
2019-03-12 | 55374.0 | 8653.0 | 843.0 | 1501.0 | 59
2019-03-13 | 55046.0 | 8509.0 | 887.0 | 1556.0 | 65
2019-03-14 | 55518.0 | 8551.0 | 848.0 | 1516.0 | 77
2019-03-15 | 55329.0 | 8575.0 | 818.0 | 1607.0 | 96
2019-03-16 | 55030.0 | 8651.0 | 815.0 | 1542.0 | 66
2019-03-17 | 55143.0 | 8435.0 | 774.0 | 1572.0 | 65
2019-03-18 | 54065.0 | 8211.0 | 816.0 | 1574.0 | 111
2019-03-19 | 55097.0 | 8395.0 | 771.0 | 1498.0 | 86
2019-03-20 | 55198.0 | 8472.0 | 863.0 | 1583.0 | 82
2019-03-21 | 54978.0 | 8490.0 | 820.0 | 1580.0 | 83
2019-03-22 | 55464.0 | 8561.0 | 820.0 | 1559.0 | 83
2019-03-23 | 55384.0 | 8482.0 | 800.0 | 1139.0 | 82
2019-03-24 | 55295.0 | 8594.0 | 841.0 | 1382.0 | 78
2019-03-25 | 42069.0 | 6365.0 | 606.0 | 1509.0 | 62
2019-03-26 | 49724.0 | 7629.0 | 724.0 | 1553.0 | 44
2019-03-27 | 55111.0 | 8524.0 | 804.0 | 1524.0 | 94
2019-03-28 | 55030.0 | 8439.0 | 822.0 | 1554.0 | 73
2019-03-29 | 55281.0 | 8601.0 | 854.0 | 1580.0 | 73
2019-03-30 | 55162.0 | 8538.0 | 846.0 | 1534.0 | 79
2019-03-31 | 55437.0 | 8486.0 | 807.0 | 1649.0 | 68
(31 rows)
다음 예제에서는 가장 많이 본 사용자의 ID를 나열하는 보고서를 만듭니다.
SELECT
endUserIds._experience.aaid.id,
SUM(web.webPageDetails.pageviews.value) as pageViews
FROM your_analytics_table
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC
LIMIT 10;
id | pageViews
-----------------------------------+-----------
457C3510571E5930-69AA721C4CBF9339 | 706.0
776F85658792C017-6491FE6570382A01 | 700.0
6BEC9C6AB52E779F-28F5B023113F2C85 | 654.0
1C0CCFB2DC63611E-6E4A4D4142AEB613 | 642.0
112EE9A6F3BE29D1-514A6C355A2C9EF6 | 629.0
CCC75A0E6AC7F2FA-11D58515D370F626 | 624.0
749F850A44153120-3710C53FA2162349 | 614.0
2B668C6DDDAF0C505-92EDCC072F7CDDA | 587.0
7EB7257335935320-101921AF45111FE6 | 586.0
5F4759CA80DCA9C9-2C0DA93D80D9DBFA | 586.0
(10 rows)
다음 예제에서는 지정된 사용자가 본 마지막 100페이지를 나열합니다.
SELECT
timestamp,
web.webReferrer.type as referrerType,
web.webReferrer.URL as referrer,
web.webPageDetails.name as pageName,
_experience.analytics.event1to100.event1.value as A,
_experience.analytics.event1to100.event2.value as B,
_experience.analytics.event1to100.event3.value as C,
web.webPageDetails.pageviews.value as pageViews
FROM your_analytics_table
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339'
ORDER BY timestamp
LIMIT 100;
timestamp | referrerType | referrer | pageName | A | B | C | pageViews
----------------------+----------------+--------------------------------------------------------------------+-------------------------------------+-----+-----+-----+--------------
2019-11-08 17:15:28.0 | typed_bookmark | | | | | |
2019-11-08 17:53:05.0 | social | http://www.reddit.com | Home | | | | 1.0
2019-11-08 17:53:45.0 | typed_bookmark | | Kids | | | | 1.0
2019-11-08 19:22:34.0 | typed_bookmark | | | | | |
2019-11-08 20:01:12.0 | search_engine | http://www.google.com/search?ie=UTF-8&q=laundry parkas&cid=sem:115 | Home | | | | 1.0
2019-11-08 20:01:57.0 | typed_bookmark | | Kids | | | | 1.0
2019-11-08 20:03:36.0 | typed_bookmark | | Search Results | 1.0 | | | 1.0
2019-11-08 20:04:30.0 | typed_bookmark | | Product Details: Pemmican Power Bar | | | | 1.0
2019-11-08 20:05:27.0 | typed_bookmark | | Shopping Cart: Cart Details | | | | 1.0
2019-11-08 20:06:07.0 | typed_bookmark | | Shopping Cart: Shipping Information | | | | 1.0
2019-11-08 20:07:02.0 | typed_bookmark | | Shopping Cart: Billing Information | | | 1.0 | 1.0
2019-11-08 20:07:52.0 | typed_bookmark | | Shopping Cart: Order Review | | | | 1.0
2019-11-08 20:08:45.0 | typed_bookmark | | Order Confirmation | | | | 1.0
2019-11-08 20:09:24.0 | typed_bookmark | | Home | | | | 1.0
2019-11-08 20:10:03.0 | typed_bookmark | | Editorial Page: Camping Essentials | | | | 1.0
2019-11-08 20:11:01.0 | typed_bookmark | | Account Registration|Form | | | | 1.0
2019-11-08 20:11:38.0 | typed_bookmark | | Seasonal Sale | | | | 1.0
2019-11-08 20:12:10.0 | typed_bookmark | | Blog: Iris Sagan | | | | 1.0
2019-11-08 20:13:09.0 | typed_bookmark | | Product Details: UltraTech Socks | | | | 1.0
2019-11-08 20:14:05.0 | typed_bookmark | | Seasonal Sale | | | | 1.0
다음 예는 지정된 사용자에 대한 다양한 분석 값의 집계 보고서를 보여줍니다.
SELECT
endUserIds._experience.aaid.id,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
CASE
WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas'
THEN 1
ELSE 0
END) as viewedParkas
FROM your_analytics_table
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339'
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC;
id | pageViews | A | B | C | viewedParkas
----------------------------------+-----------+-------+-------+-------+--------------
457C3510571E5930-69AA721C4CBF9339 | 706.0 | 83.0 | 7.0 | 38.0 | 22
ADF(Adobe 정의 함수)를 사용하는 샘플 쿼리에 대한 자세한 내용은 Adobe 정의 함수 안내서를 참조하십시오. 쿼리 실행에 대한 일반적인 지침은 쿼리 서비스에서 쿼리 실행에 대한 안내서.