Ejemplos de consultas para Experience Events

Además de las consultas SQL estándar, Adobe Experience Platform Query Service admite la escritura de consultas mediante Experience Events. Los eventos de experiencia están representados por la clase ExperienceEvent del Modelo de datos de experiencia (XDM), que captura una instantánea inmutable y no agregada del sistema cuando un usuario interactúa con un sitio web o servicio y, por lo tanto, se puede utilizar para el análisis del dominio de tiempo.

Más información sobre XDM y Experience Events se encuentra en la variable XDM System información general. Combinando Query Service con Experience Events, puede realizar un seguimiento eficaz de las tendencias de comportamiento entre los usuarios. El siguiente documento proporciona ejemplos de consultas que involucran Experience Events.

Creación de un informe de tendencias de eventos por día en un intervalo de fechas específico

En el siguiente ejemplo se crea un informe de tendencias de eventos en un intervalo de fechas especificado, agrupado por fecha. En concreto, resume varios valores de análisis como A, B y C, y luego resume el número de veces que se ha visto el parámetro.

La columna de marca de tiempo que se encuentra en Experience Event los conjuntos de datos están en UTC. El ejemplo siguiente utiliza la variable from_utc_timestamp() para transformar la marca de tiempo de UTC a EDT. A continuación, utiliza la variable date_format() para aislar la fecha del resto de la marca de tiempo.

SELECT
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas'
    THEN 1
    ELSE 0
    END) as viewedParkas
FROM your_analytics_table
WHERE TIMESTAMP >= to_timestamp('2019-03-01') AND TIMESTAMP <= to_timestamp('2019-03-31')
GROUP BY Day
ORDER BY Day ASC, pageViews DESC;
     Day     | pageViews |   A    |   B   |    C    | viewedParkas
-------------+-----------+--------+-------+---------+--------------
 2019-03-01  |   55317.0 | 8503.0 | 804.0 | 1578.0  |           73
 2019-03-02  |   55302.0 | 8600.0 | 854.0 | 1528.0  |           86
 2019-03-03  |   54613.0 | 8162.0 | 795.0 | 1568.0  |          100
 2019-03-04  |   54501.0 | 8479.0 | 832.0 | 1509.0  |          100
 2019-03-05  |   54941.0 | 8603.0 | 816.0 | 1514.0  |           73
 2019-03-06  |   54817.0 | 8434.0 | 855.0 | 1538.0  |           76
 2019-03-07  |   55201.0 | 8604.0 | 843.0 | 1517.0  |           64
 2019-03-08  |   55020.0 | 8490.0 | 849.0 | 1536.0  |           99
 2019-03-09  |   43186.0 | 6736.0 | 643.0 | 1150.0  |           52
 2019-03-10  |   48471.0 | 7542.0 | 772.0 | 1272.0  |           70
 2019-03-11  |   56307.0 | 8721.0 | 818.0 | 1571.0  |           81
 2019-03-12  |   55374.0 | 8653.0 | 843.0 | 1501.0  |           59
 2019-03-13  |   55046.0 | 8509.0 | 887.0 | 1556.0  |           65
 2019-03-14  |   55518.0 | 8551.0 | 848.0 | 1516.0  |           77
 2019-03-15  |   55329.0 | 8575.0 | 818.0 | 1607.0  |           96
 2019-03-16  |   55030.0 | 8651.0 | 815.0 | 1542.0  |           66
 2019-03-17  |   55143.0 | 8435.0 | 774.0 | 1572.0  |           65
 2019-03-18  |   54065.0 | 8211.0 | 816.0 | 1574.0  |          111
 2019-03-19  |   55097.0 | 8395.0 | 771.0 | 1498.0  |           86
 2019-03-20  |   55198.0 | 8472.0 | 863.0 | 1583.0  |           82
 2019-03-21  |   54978.0 | 8490.0 | 820.0 | 1580.0  |           83
 2019-03-22  |   55464.0 | 8561.0 | 820.0 | 1559.0  |           83
 2019-03-23  |   55384.0 | 8482.0 | 800.0 | 1139.0  |           82
 2019-03-24  |   55295.0 | 8594.0 | 841.0 | 1382.0  |           78
 2019-03-25  |   42069.0 | 6365.0 | 606.0 | 1509.0  |           62
 2019-03-26  |   49724.0 | 7629.0 | 724.0 | 1553.0  |           44
 2019-03-27  |   55111.0 | 8524.0 | 804.0 | 1524.0  |           94
 2019-03-28  |   55030.0 | 8439.0 | 822.0 | 1554.0  |           73
 2019-03-29  |   55281.0 | 8601.0 | 854.0 | 1580.0  |           73
 2019-03-30  |   55162.0 | 8538.0 | 846.0 | 1534.0  |           79
 2019-03-31  |   55437.0 | 8486.0 | 807.0 | 1649.0  |           68
 (31 rows)

Recuperación de una lista de visitantes organizada por número de vistas de página.

En el siguiente ejemplo se crea un informe que enumera los ID de los usuarios que vieron la mayoría de las páginas.

SELECT
endUserIds._experience.aaid.id,
SUM(web.webPageDetails.pageviews.value) as pageViews
FROM your_analytics_table
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC
LIMIT 10;
               id                  | pageViews
-----------------------------------+-----------
 457C3510571E5930-69AA721C4CBF9339 |     706.0
 776F85658792C017-6491FE6570382A01 |     700.0
 6BEC9C6AB52E779F-28F5B023113F2C85 |     654.0
 1C0CCFB2DC63611E-6E4A4D4142AEB613 |     642.0
 112EE9A6F3BE29D1-514A6C355A2C9EF6 |     629.0
 CCC75A0E6AC7F2FA-11D58515D370F626 |     624.0
 749F850A44153120-3710C53FA2162349 |     614.0
 2B668C6DDDAF0C505-92EDCC072F7CDDA |     587.0
 7EB7257335935320-101921AF45111FE6 |     586.0
 5F4759CA80DCA9C9-2C0DA93D80D9DBFA |     586.0
(10 rows)

Reproducción de las sesiones de un visitante

En el siguiente ejemplo se enumeran las últimas 100 páginas que ha visto un usuario especificado.

SELECT
timestamp,
web.webReferrer.type as referrerType,
web.webReferrer.URL as referrer,
web.webPageDetails.name as pageName,
_experience.analytics.event1to100.event1.value as A,
_experience.analytics.event1to100.event2.value as B,
_experience.analytics.event1to100.event3.value as C,
web.webPageDetails.pageviews.value as pageViews
FROM your_analytics_table
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339'
ORDER BY timestamp
LIMIT 100;
      timestamp       |  referrerType  |                            referrer                                |                 pageName            |  A  |  B  |  C  | pageViews
----------------------+----------------+--------------------------------------------------------------------+-------------------------------------+-----+-----+-----+--------------
2019-11-08 17:15:28.0 | typed_bookmark |                                                                    |                                     |     |     |     |
2019-11-08 17:53:05.0 | social         | http://www.reddit.com                                              | Home                                |     |     |     |          1.0
2019-11-08 17:53:45.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 19:22:34.0 | typed_bookmark |                                                                    |                                     |     |     |     |
2019-11-08 20:01:12.0 | search_engine  | http://www.google.com/search?ie=UTF-8&q=laundry parkas&cid=sem:115 | Home                                |     |     |     |          1.0
2019-11-08 20:01:57.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 20:03:36.0 | typed_bookmark |                                                                    | Search Results                      | 1.0 |     |     |          1.0
2019-11-08 20:04:30.0 | typed_bookmark |                                                                    | Product Details: Pemmican Power Bar |     |     |     |          1.0
2019-11-08 20:05:27.0 | typed_bookmark |                                                                    | Shopping Cart: Cart Details         |     |     |     |          1.0
2019-11-08 20:06:07.0 | typed_bookmark |                                                                    | Shopping Cart: Shipping Information |     |     |     |          1.0
2019-11-08 20:07:02.0 | typed_bookmark |                                                                    | Shopping Cart: Billing Information  |     |     | 1.0 |          1.0
2019-11-08 20:07:52.0 | typed_bookmark |                                                                    | Shopping Cart: Order Review         |     |     |     |          1.0
2019-11-08 20:08:45.0 | typed_bookmark |                                                                    | Order Confirmation                  |     |     |     |          1.0
2019-11-08 20:09:24.0 | typed_bookmark |                                                                    | Home                                |     |     |     |          1.0
2019-11-08 20:10:03.0 | typed_bookmark |                                                                    | Editorial Page: Camping Essentials  |     |     |     |          1.0
2019-11-08 20:11:01.0 | typed_bookmark |                                                                    | Account Registration|Form           |     |     |     |          1.0
2019-11-08 20:11:38.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0
2019-11-08 20:12:10.0 | typed_bookmark |                                                                    | Blog: Iris Sagan                    |     |     |     |          1.0
2019-11-08 20:13:09.0 | typed_bookmark |                                                                    | Product Details: UltraTech Socks    |     |     |     |          1.0
2019-11-08 20:14:05.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0

Visualización de un informe resumido de un visitante

El siguiente ejemplo muestra un informe agregado de varios valores de análisis para un usuario especificado.

SELECT
endUserIds._experience.aaid.id,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas'
    THEN 1
    ELSE 0
    END) as viewedParkas
FROM your_analytics_table
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339'
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC;
               id                 | pageViews |   A   |   B   |   C   | viewedParkas
----------------------------------+-----------+-------+-------+-------+--------------
457C3510571E5930-69AA721C4CBF9339 |     706.0 | 83.0  |  7.0  | 38.0  |          22

Pasos siguientes

Para obtener más información sobre consultas de ejemplo que utilizan funciones definidas por Adobe (ADF), lea la guía Funciones definidas por Adobe . Para obtener instrucciones generales sobre la ejecución de consultas, lea la guía sobre la ejecución de consultas en Query Service.

En esta página