ExperienceEvent query

Além dos query SQL padrão, a Adobe Experience Platform Query Service suporta gravar query usando ExperienceEvents. Um ExperienceEvent é uma classe Experience Data Model (XDM) que representa um instantâneo não agregado imutável do sistema quando um usuário interage com um site ou serviço e, portanto, pode ser usado para análise de domínio de tempo. Mais informações sobre o XDM e Experience Events podem ser encontradas na XDM System visão geral. Ao combinar Query Service com ExperienceEvents, você pode efetivamente rastrear tendências comportamentais entre seus usuários. O documento a seguir fornece exemplos de query que envolvem ExperienceEvents.

Criação de um relatório de tendências de eventos por dia em um intervalo de datas específico

O exemplo a seguir cria um relatório de tendências de eventos em um intervalo de datas especificado, agrupado por data. Especificamente, ela resume vários valores de análise como A, B e C e, em seguida, resume o número de vezes que parkas foi visualizado.

A coluna de carimbo de data e hora encontrada nos Experience Event conjuntos de dados está em UTC. O exemplo a seguir usa a from_utc_timestamp() função para transformar o carimbo de data e hora de UTC para EDT. Em seguida, ele usa a date_format() função para isolar a data do restante do carimbo de data e hora.

SELECT 
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE TIMESTAMP >= to_timestamp('2019-03-01') AND TIMESTAMP <= to_timestamp('2019-03-31')
GROUP BY Day 
ORDER BY Day ASC, pageViews DESC;
     Day     | pageViews |   A    |   B   |    C    | viewedParkas
-------------+-----------+--------+-------+---------+--------------
 2019-03-01  |   55317.0 | 8503.0 | 804.0 | 1578.0  |           73
 2019-03-02  |   55302.0 | 8600.0 | 854.0 | 1528.0  |           86
 2019-03-03  |   54613.0 | 8162.0 | 795.0 | 1568.0  |          100
 2019-03-04  |   54501.0 | 8479.0 | 832.0 | 1509.0  |          100
 2019-03-05  |   54941.0 | 8603.0 | 816.0 | 1514.0  |           73
 2019-03-06  |   54817.0 | 8434.0 | 855.0 | 1538.0  |           76
 2019-03-07  |   55201.0 | 8604.0 | 843.0 | 1517.0  |           64
 2019-03-08  |   55020.0 | 8490.0 | 849.0 | 1536.0  |           99
 2019-03-09  |   43186.0 | 6736.0 | 643.0 | 1150.0  |           52
 2019-03-10  |   48471.0 | 7542.0 | 772.0 | 1272.0  |           70
 2019-03-11  |   56307.0 | 8721.0 | 818.0 | 1571.0  |           81
 2019-03-12  |   55374.0 | 8653.0 | 843.0 | 1501.0  |           59
 2019-03-13  |   55046.0 | 8509.0 | 887.0 | 1556.0  |           65
 2019-03-14  |   55518.0 | 8551.0 | 848.0 | 1516.0  |           77
 2019-03-15  |   55329.0 | 8575.0 | 818.0 | 1607.0  |           96
 2019-03-16  |   55030.0 | 8651.0 | 815.0 | 1542.0  |           66
 2019-03-17  |   55143.0 | 8435.0 | 774.0 | 1572.0  |           65
 2019-03-18  |   54065.0 | 8211.0 | 816.0 | 1574.0  |          111
 2019-03-19  |   55097.0 | 8395.0 | 771.0 | 1498.0  |           86
 2019-03-20  |   55198.0 | 8472.0 | 863.0 | 1583.0  |           82
 2019-03-21  |   54978.0 | 8490.0 | 820.0 | 1580.0  |           83
 2019-03-22  |   55464.0 | 8561.0 | 820.0 | 1559.0  |           83
 2019-03-23  |   55384.0 | 8482.0 | 800.0 | 1139.0  |           82
 2019-03-24  |   55295.0 | 8594.0 | 841.0 | 1382.0  |           78
 2019-03-25  |   42069.0 | 6365.0 | 606.0 | 1509.0  |           62
 2019-03-26  |   49724.0 | 7629.0 | 724.0 | 1553.0  |           44
 2019-03-27  |   55111.0 | 8524.0 | 804.0 | 1524.0  |           94
 2019-03-28  |   55030.0 | 8439.0 | 822.0 | 1554.0  |           73
 2019-03-29  |   55281.0 | 8601.0 | 854.0 | 1580.0  |           73
 2019-03-30  |   55162.0 | 8538.0 | 846.0 | 1534.0  |           79
 2019-03-31  |   55437.0 | 8486.0 | 807.0 | 1649.0  |           68
 (31 rows)

Recuperando uma lista de visitantes organizada pelo número de visualizações de página.

O exemplo a seguir cria um relatório que lista as IDs dos usuários que mais visualizaram as páginas.

SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews 
FROM your_analytics_table
GROUP BY endUserIds._experience.aaid.id 
ORDER BY pageViews DESC
LIMIT 10;
               id                  | pageViews
-----------------------------------+-----------
 457C3510571E5930-69AA721C4CBF9339 |     706.0
 776F85658792C017-6491FE6570382A01 |     700.0
 6BEC9C6AB52E779F-28F5B023113F2C85 |     654.0
 1C0CCFB2DC63611E-6E4A4D4142AEB613 |     642.0
 112EE9A6F3BE29D1-514A6C355A2C9EF6 |     629.0
 CCC75A0E6AC7F2FA-11D58515D370F626 |     624.0
 749F850A44153120-3710C53FA2162349 |     614.0
 2B668C6DDDAF0C505-92EDCC072F7CDDA |     587.0
 7EB7257335935320-101921AF45111FE6 |     586.0
 5F4759CA80DCA9C9-2C0DA93D80D9DBFA |     586.0
(10 rows)

Reproduzindo sessões de visitante

O exemplo a seguir lista as últimas 100 páginas visualizadas por um usuário especificado.

SELECT 
timestamp, 
web.webReferrer.type as referrerType, 
web.webReferrer.URL as referrer, 
web.webPageDetails.name as pageName, 
_experience.analytics.event1to100.event1.value as A, 
_experience.analytics.event1to100.event2.value as B, 
_experience.analytics.event1to100.event3.value as C, 
web.webPageDetails.pageviews.value as pageViews
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
ORDER BY timestamp 
LIMIT 100;
      timestamp       |  referrerType  |                            referrer                                |                 pageName            |  A  |  B  |  C  | pageViews
----------------------+----------------+--------------------------------------------------------------------+-------------------------------------+-----+-----+-----+--------------
2019-11-08 17:15:28.0 | typed_bookmark |                                                                    |                                     |     |     |     |
2019-11-08 17:53:05.0 | social         | http://www.reddit.com                                              | Home                                |     |     |     |          1.0
2019-11-08 17:53:45.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 19:22:34.0 | typed_bookmark |                                                                    |                                     |     |     |     |          
2019-11-08 20:01:12.0 | search_engine  | http://www.google.com/search?ie=UTF-8&q=laundry parkas&cid=sem:115 | Home                                |     |     |     |          1.0 
2019-11-08 20:01:57.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 20:03:36.0 | typed_bookmark |                                                                    | Search Results                      | 1.0 |     |     |          1.0
2019-11-08 20:04:30.0 | typed_bookmark |                                                                    | Product Details: Pemmican Power Bar |     |     |     |          1.0
2019-11-08 20:05:27.0 | typed_bookmark |                                                                    | Shopping Cart: Cart Details         |     |     |     |          1.0
2019-11-08 20:06:07.0 | typed_bookmark |                                                                    | Shopping Cart: Shipping Information |     |     |     |          1.0
2019-11-08 20:07:02.0 | typed_bookmark |                                                                    | Shopping Cart: Billing Information  |     |     | 1.0 |          1.0
2019-11-08 20:07:52.0 | typed_bookmark |                                                                    | Shopping Cart: Order Review         |     |     |     |          1.0
2019-11-08 20:08:45.0 | typed_bookmark |                                                                    | Order Confirmation                  |     |     |     |          1.0
2019-11-08 20:09:24.0 | typed_bookmark |                                                                    | Home                                |     |     |     |          1.0
2019-11-08 20:10:03.0 | typed_bookmark |                                                                    | Editorial Page: Camping Essentials  |     |     |     |          1.0
2019-11-08 20:11:01.0 | typed_bookmark |                                                                    | Account Registration|Form           |     |     |     |          1.0
2019-11-08 20:11:38.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0
2019-11-08 20:12:10.0 | typed_bookmark |                                                                    | Blog: Iris Sagan                    |     |     |     |          1.0
2019-11-08 20:13:09.0 | typed_bookmark |                                                                    | Product Details: UltraTech Socks    |     |     |     |          1.0
2019-11-08 20:14:05.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0

Exibição de um relatório de rollup de um visitante

O exemplo a seguir mostra um relatório de agregação de vários valores de análise para um usuário especificado.

SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews, 
SUM(_experience.analytics.event1to100.event1.value) as A, 
SUM(_experience.analytics.event1to100.event2.value) as B, 
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC;
               id                 | pageViews |   A   |   B   |   C   | viewedParkas
----------------------------------+-----------+-------+-------+-------+--------------
457C3510571E5930-69AA721C4CBF9339 |     706.0 | 83.0  |  7.0  | 38.0  |          22

Próximas etapas

Para obter mais informações sobre query de amostra usando funções definidas pelo Adobe (ADFs), leia o guia Funções definidas pelo Adobe. Para obter orientações gerais sobre a execução de query, leia o guia sobre a execução de query no Query Service.

Nesta página