Abfragen für Muster für Experience Events

Zusätzlich zu den standardmäßigen SQL-Abfragen unterstützt Adobe Experience Platform Query Service das Schreiben von Abfragen mit Experience Events. Experience Ereignisses wird durch die Experience Data Model (XDM) ExperienceEvent-Klasse dargestellt, die einen unveränderlichen und nicht aggregierten Schnappschuss des Systems erfasst, wenn ein Benutzer mit einer Website oder einem Dienst interagiert, und daher für die Analyse der Zeitdomäne verwendet werden kann.

Weitere Informationen zu XDM und Experience Events finden Sie im XDM System overview. Durch die Kombination von Query Service und Experience Events können Sie Verhaltenstrends unter Ihren Benutzern effektiv verfolgen. Das folgende Dokument enthält Beispiele für Abfragen mit Experience Events.

Erstellen eines Trendberichts mit Ereignissen nach Tagen über einen bestimmten Datumsbereich

Im folgenden Beispiel wird ein Trendbericht mit Ereignissen über einen bestimmten Datumsbereich erstellt, der nach Datum gruppiert ist. Insbesondere werden verschiedene Analytics-Werte als A, B und C zusammengefasst und anschließend die Häufigkeit, mit der Parkas angezeigt wurden.

Die Zeitstempelspalte in Experience Event-Datensätzen befindet sich in UTC. Im folgenden Beispiel wird die from_utc_timestamp()-Funktion verwendet, um den Zeitstempel von UTC in EDT umzuwandeln. Anschließend wird mit der date_format()-Funktion das Datum vom Rest des Zeitstempels getrennt.

SELECT 
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE TIMESTAMP >= to_timestamp('2019-03-01') AND TIMESTAMP <= to_timestamp('2019-03-31')
GROUP BY Day 
ORDER BY Day ASC, pageViews DESC;
     Day     | pageViews |   A    |   B   |    C    | viewedParkas
-------------+-----------+--------+-------+---------+--------------
 2019-03-01  |   55317.0 | 8503.0 | 804.0 | 1578.0  |           73
 2019-03-02  |   55302.0 | 8600.0 | 854.0 | 1528.0  |           86
 2019-03-03  |   54613.0 | 8162.0 | 795.0 | 1568.0  |          100
 2019-03-04  |   54501.0 | 8479.0 | 832.0 | 1509.0  |          100
 2019-03-05  |   54941.0 | 8603.0 | 816.0 | 1514.0  |           73
 2019-03-06  |   54817.0 | 8434.0 | 855.0 | 1538.0  |           76
 2019-03-07  |   55201.0 | 8604.0 | 843.0 | 1517.0  |           64
 2019-03-08  |   55020.0 | 8490.0 | 849.0 | 1536.0  |           99
 2019-03-09  |   43186.0 | 6736.0 | 643.0 | 1150.0  |           52
 2019-03-10  |   48471.0 | 7542.0 | 772.0 | 1272.0  |           70
 2019-03-11  |   56307.0 | 8721.0 | 818.0 | 1571.0  |           81
 2019-03-12  |   55374.0 | 8653.0 | 843.0 | 1501.0  |           59
 2019-03-13  |   55046.0 | 8509.0 | 887.0 | 1556.0  |           65
 2019-03-14  |   55518.0 | 8551.0 | 848.0 | 1516.0  |           77
 2019-03-15  |   55329.0 | 8575.0 | 818.0 | 1607.0  |           96
 2019-03-16  |   55030.0 | 8651.0 | 815.0 | 1542.0  |           66
 2019-03-17  |   55143.0 | 8435.0 | 774.0 | 1572.0  |           65
 2019-03-18  |   54065.0 | 8211.0 | 816.0 | 1574.0  |          111
 2019-03-19  |   55097.0 | 8395.0 | 771.0 | 1498.0  |           86
 2019-03-20  |   55198.0 | 8472.0 | 863.0 | 1583.0  |           82
 2019-03-21  |   54978.0 | 8490.0 | 820.0 | 1580.0  |           83
 2019-03-22  |   55464.0 | 8561.0 | 820.0 | 1559.0  |           83
 2019-03-23  |   55384.0 | 8482.0 | 800.0 | 1139.0  |           82
 2019-03-24  |   55295.0 | 8594.0 | 841.0 | 1382.0  |           78
 2019-03-25  |   42069.0 | 6365.0 | 606.0 | 1509.0  |           62
 2019-03-26  |   49724.0 | 7629.0 | 724.0 | 1553.0  |           44
 2019-03-27  |   55111.0 | 8524.0 | 804.0 | 1524.0  |           94
 2019-03-28  |   55030.0 | 8439.0 | 822.0 | 1554.0  |           73
 2019-03-29  |   55281.0 | 8601.0 | 854.0 | 1580.0  |           73
 2019-03-30  |   55162.0 | 8538.0 | 846.0 | 1534.0  |           79
 2019-03-31  |   55437.0 | 8486.0 | 807.0 | 1649.0  |           68
 (31 rows)

Abrufen einer Liste von Besuchern, die nach Seitenansichten organisiert sind.

Im folgenden Beispiel wird ein Bericht erstellt, der die IDs der Benutzer auflistet, die die meisten Seiten aufgerufen haben.

SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews 
FROM your_analytics_table
GROUP BY endUserIds._experience.aaid.id 
ORDER BY pageViews DESC
LIMIT 10;
               id                  | pageViews
-----------------------------------+-----------
 457C3510571E5930-69AA721C4CBF9339 |     706.0
 776F85658792C017-6491FE6570382A01 |     700.0
 6BEC9C6AB52E779F-28F5B023113F2C85 |     654.0
 1C0CCFB2DC63611E-6E4A4D4142AEB613 |     642.0
 112EE9A6F3BE29D1-514A6C355A2C9EF6 |     629.0
 CCC75A0E6AC7F2FA-11D58515D370F626 |     624.0
 749F850A44153120-3710C53FA2162349 |     614.0
 2B668C6DDDAF0C505-92EDCC072F7CDDA |     587.0
 7EB7257335935320-101921AF45111FE6 |     586.0
 5F4759CA80DCA9C9-2C0DA93D80D9DBFA |     586.0
(10 rows)

Wiedergeben der Sitzungen eines Besuchers

Im folgenden Beispiel werden die letzten 100 Seiten aufgelistet, die ein bestimmter Benutzer angezeigt hat.

SELECT 
timestamp, 
web.webReferrer.type as referrerType, 
web.webReferrer.URL as referrer, 
web.webPageDetails.name as pageName, 
_experience.analytics.event1to100.event1.value as A, 
_experience.analytics.event1to100.event2.value as B, 
_experience.analytics.event1to100.event3.value as C, 
web.webPageDetails.pageviews.value as pageViews
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
ORDER BY timestamp 
LIMIT 100;
      timestamp       |  referrerType  |                            referrer                                |                 pageName            |  A  |  B  |  C  | pageViews
----------------------+----------------+--------------------------------------------------------------------+-------------------------------------+-----+-----+-----+--------------
2019-11-08 17:15:28.0 | typed_bookmark |                                                                    |                                     |     |     |     |
2019-11-08 17:53:05.0 | social         | http://www.reddit.com                                              | Home                                |     |     |     |          1.0
2019-11-08 17:53:45.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 19:22:34.0 | typed_bookmark |                                                                    |                                     |     |     |     |          
2019-11-08 20:01:12.0 | search_engine  | http://www.google.com/search?ie=UTF-8&q=laundry parkas&cid=sem:115 | Home                                |     |     |     |          1.0 
2019-11-08 20:01:57.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 20:03:36.0 | typed_bookmark |                                                                    | Search Results                      | 1.0 |     |     |          1.0
2019-11-08 20:04:30.0 | typed_bookmark |                                                                    | Product Details: Pemmican Power Bar |     |     |     |          1.0
2019-11-08 20:05:27.0 | typed_bookmark |                                                                    | Shopping Cart: Cart Details         |     |     |     |          1.0
2019-11-08 20:06:07.0 | typed_bookmark |                                                                    | Shopping Cart: Shipping Information |     |     |     |          1.0
2019-11-08 20:07:02.0 | typed_bookmark |                                                                    | Shopping Cart: Billing Information  |     |     | 1.0 |          1.0
2019-11-08 20:07:52.0 | typed_bookmark |                                                                    | Shopping Cart: Order Review         |     |     |     |          1.0
2019-11-08 20:08:45.0 | typed_bookmark |                                                                    | Order Confirmation                  |     |     |     |          1.0
2019-11-08 20:09:24.0 | typed_bookmark |                                                                    | Home                                |     |     |     |          1.0
2019-11-08 20:10:03.0 | typed_bookmark |                                                                    | Editorial Page: Camping Essentials  |     |     |     |          1.0
2019-11-08 20:11:01.0 | typed_bookmark |                                                                    | Account Registration|Form           |     |     |     |          1.0
2019-11-08 20:11:38.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0
2019-11-08 20:12:10.0 | typed_bookmark |                                                                    | Blog: Iris Sagan                    |     |     |     |          1.0
2019-11-08 20:13:09.0 | typed_bookmark |                                                                    | Product Details: UltraTech Socks    |     |     |     |          1.0
2019-11-08 20:14:05.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0

Anzeigen eines Datenaggregationsberichts eines Besuchers

Das folgende Beispiel zeigt einen Aggregatbericht mit verschiedenen Analytics-Werten für einen bestimmten Benutzer.

SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews, 
SUM(_experience.analytics.event1to100.event1.value) as A, 
SUM(_experience.analytics.event1to100.event2.value) as B, 
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC;
               id                 | pageViews |   A   |   B   |   C   | viewedParkas
----------------------------------+-----------+-------+-------+-------+--------------
457C3510571E5930-69AA721C4CBF9339 |     706.0 | 83.0  |  7.0  | 38.0  |          22

Nächste Schritte

Weitere Informationen zu Beispielabfragen mit Adobe Defined Functions (ADFs) finden Sie im Handbuch für Adobe Defined Functions. Allgemeine Hinweise zur Ausführung von Abfragen finden Sie im Handbuch zum Ausführen von Abfragen in Query Service.

Auf dieser Seite