Rezept für Produktempfehlungen

Mit dem Rezept „Produktempfehlungen“ können Sie personalisierte Produktempfehlungen bereitstellen, die auf die Bedürfnisse und Interessen Ihrer Kunden zugeschnitten sind. Mit einem präzisen Prognosemodell können Sie anhand der Einkaufshistorie von Kunden feststellen, für welche Produkte sie sich interessieren.

Für wen ist dieses Rezept gedacht?

Heutzutage können Einzelhändler eine Vielzahl von Produkten und Kunden somit eine große Auswahl anbieten, was jedoch auch die Suche erschweren kann. Aufgrund des begrenzten Zeit- und Arbeitsaufwands finden Kunden das gewünschte Produkt möglicherweise gar nicht, was zu Käufen mit hoher kognitiver Dissonanz oder überhaupt keinen Käufen führen kann.

Was macht dieses Rezept?

Das Rezept „Produktempfehlungen“ verwendet maschinelles Lernen, um frühere Interaktionen eines Kunden mit Produkten zu analysieren sowie schnell und einfach eine personalisierte Liste mit Produktempfehlungen zu generieren. So wird die Produktsuche optimiert und lassen sich lange, unproduktive, irrelevante Suchen für Ihre Kunden vermeiden. Das Rezept „Produktempfehlungen“ kann daher das Einkaufserlebnis von Kunden insgesamt verbessern, was zu mehr Interaktion und einer höheren Markentreue führt.

Wie sehen die ersten Schritte aus?

Beginnen Sie mit dem Tutorial zum Adobe Experience Platform Lab (siehe Lab-Link unten). Dieses Lernprogramm zeigt Ihnen, wie Sie das Produkt-Recommendations-Rezept in einem Jupyter-Notebook erstellen, indem Sie dem Notebook-zu-Rezept-Arbeitsablauf folgen und das Rezept in Experience Platform Data Science Workspace implementieren.

Datenschema

Dieses Rezept nutzt benutzerdefinierte XDM-Schemas zum Modellieren der Eingabe- und Ausgabedaten:

Schema für Eingabedaten

Feldname Typ
itemId Zeichenfolge
interactionType Zeichenfolge
timestamp Zeichenfolge
userId Zeichenfolge

Schema für Ausgabedaten

Feldname Typ
recommendations Zeichenfolge
userId Ganzzahl

Algorithmus

Das Rezept „Produktempfehlungen“ nutzt kollaborative Filterung, um eine personalisierte Liste mit Produktempfehlungen für Ihre Kunden zu generieren. Kollaborative Filterung erfordert im Gegensatz zu einem inhaltsbasierten Ansatz keine Informationen über ein bestimmtes Produkt, sondern nutzt vielmehr die historischen Präferenzen eines Kunden für eine Reihe von Produkten. Dieses leistungsstarke Empfehlungsverfahren basiert auf zwei einfachen Annahmen:

  • Es gibt Kunden mit ähnlichen Interessen; diese lassen sich gruppieren, indem man ihr Einkaufs- und Browsing-Verhalten miteinander vergleicht.
  • Kunden sind eher an Empfehlungen interessiert, an denen auch Kunden mit einem ähnlichen Einkaufs- und Browsing-Verhalten Interesse haben.

Dieses Verfahren ist in zwei Hauptschritte unterteilt. Zunächst definieren Sie eine Untergruppe ähnlicher Kunden. Dann identifizieren Sie innerhalb dieser Gruppe ähnliche Merkmale bei den Kunden, um eine Empfehlung für den Zielkunden zurückzugeben.

Auf dieser Seite

Adobe Summit Banner

A virtual event April 27-28.

Expand your skills and get inspired.

Register for free
Adobe Summit Banner

A virtual event April 27-28.

Expand your skills and get inspired.

Register for free