ADOBE GLOBAL SERVICES
[image: ][image: ][image: ]
ACS Best Practices
AEM 6
Code Promotion & Content Synchronization


Table of Contents
1	Content Flow in AEM	4
2	Code Promotion	4
2.1	Recommended Environment Topology	4
2.2	Promotion Through Environments	5
2.3	Production Deployments	6
3	Content Synchronization	8
3.1	Backup/Restore	8
3.2	Content Packages	8
3.3	Filevault over RCP	9
3.4	Grabbit	9
3.5	Replication	10
3.6	Comparing Methods	10
[bookmark: _Toc465507077][bookmark: _Toc465594003][bookmark: _Toc270940229]
[bookmark: _Toc238062550]

Revisions
	Version
	Date
	Name
	Description

	1.0
	5/11/2015
	Ian Reasor
	Document creation with content synchronization approaches

	1.1
	5/11/2015
	Ian Reasor
	Added code promotion section

	1.2
	5/12/2015
	Ian Reasor
	Added production deployment process

	1.3
	5/12/2015
	Ian Reasor
	[bookmark: _GoBack]Added section on repository managers





[bookmark: _Toc293055726]Content Flow in AEM
When considering the movement of content through environments in an AEM topology, we need to look at it from two perspectives.  The code that is running the site will start on a developer’s local sandbox and be promoted through the integration and test environments, eventually ending up in production.  Conversely, the content that is being authored for the website will be created in production and be synchronized to these same staging and test environments.  
[image: ]

This document will outline some best practices for promoting code from developers’ workstations all the way up to the production environment as well as keeping content in sync throughout your AEM environments.  There are many options for synchronizing content between environments, so we will look into each of them and weigh their costs and benefits.
[bookmark: _Toc293055727]Code Promotion
[bookmark: _Toc293055728]Recommended Environment Topology
In an ideal scenario, Adobe recommends the use of five distinct environments for code promotion and testing.  These environments are listed below along with their purposes.
· Developer Local Sandbox – these are environments running locally on a developer’s workstation and allow for testing and debugging as part of the development process
· Development Integration – an environment for automated build deployment and execution of integration tests.
· QA – an environment where code can be continuously tested.  This is where the QA team will perform the bulk of their validation testing.
· Staging/UAT – an environment where a build candidate can be deployed for user acceptance testing as well as security and performance testing.  The hardware on this environment should match production as closely as possible.
· Production – the live environment where the website is authored and served from.
[bookmark: _Toc293055729]Promotion Through Environments
As code changes are made, the build will be promoted through each of these environments, encountering checkpoints along the way.  These checkpoints allow us to ensure that the staging environment is stable enough for the end users while enabling the developers and QEs to “move fast and break things”.  The process can be visualized as such:
[image: Macintosh HD:Users:ireasor:Desktop:Build Promotion Process.png]
Code Branches
In order to support concurrent activities such as applying hotfixes to the production environment, fixing bugs discovered during user acceptance testing, and active development on a future release, we recommend using a Git based repository along with the gitflow system for branching and merging.  An article describing gitflow can be found at http://nvie.com/posts/a-successful-git-branching-model/.
In general, code that lives on developers local sandboxes, the development integration environment, and QA is checked into the develop branch.  When code is to be deployed to staging, it will be branches into a release branch and the version will be set to a non-SNAPSHOT release version before deployment to the environment.  When code is ready to be deployed to production, it will be merged into master.  This allows us to always have a branch of the code that is currently live on the site, no matter where we are in the development process.
Continuous Integration
We recommend the use of a continuous integration solution when building and deploying your AEM project.  Not only does using a system such as Jenkins or TravisCI make your build process easily repeatable and testable, but with AEM’s Maven-centric approach, it is easy to implement as well.  The small amount of time invested up front to configure continuous integration will pay out in dividends in the long term.  Common jobs that we configure on our projects include:
· Push to dev – This job polls the source code repository for new checkins.  Whenever one is encountered, it will download the latest code, compile it, run unit tests, deploy to the dev integration environment, and run the automated integration tests on it.
· Push to QA – This job is able to be executed by any QE on the team when they desire a new build to perform testing on.  It will take the last successful build from the Push to dev job and deploy it to the QA environment.
· Push to Staging – This job is able to be executed by a SysAdmin when a build is ready for User Acceptance Testing.  The job will pull down the release branch specified by the SysAdmin at run time, build it, run unit tests, and deploy it to the Staging environment.
· Content refresh – Depending on the content synchronization method chosen, jobs are sometimes implemented to run scripts that enable content synchronization from production to lower environments.
It is possible to create a CI job that can perform production deployments, but this job would be much more complex than these other examples due to the need to deploy to some of the environment and validate before deploying to the rest of the environment.  That being said, scripting out deployments, especially production ones, is widely considered to be a best practice as it eliminates the risk of user error during the process. 
Repository Managers
In instances where build artifacts need to be re-used across multiple projects or have different versions maintained for later use, a repository manager can be helpful.  These can be integrated directly into the build process so that release artifacts and even snapshots can be stored and used in future Maven builds and CI jobs.  The most popular manager on the market is probably Sonatype’s Nexus product, available at http://www.sonatype.com/nexus/product-overview, but there are many options available.
[bookmark: _Toc293055730]Production Deployments
Before an implementation has been brought live, deploying to production is the same as deploying to any other environment.  Since end users are not yet accessing the servers, we can push out code and author content at whatever pace is convenient and start sending traffic to the servers when we feel that the environment is ready.  However, when the environment is already a “live” environment, there are additional considerations that come into play to ensure continued operation of the website during the deployment.
For the sake of simplicity in this discussion, we will illustrate these concepts using a common deployment scenario of one author server with two publish servers and two dispatchers, behind a load balancer.
[image: ]Phase 1 – Normal Operating Conditions
In our normal running configuration, the load balancer is splitting traffic between dispatchers 1 and 2.  Each of these dispatchers communicates with a single publish instance.  The author is pushing content to both publish servers.

[image: ]Phase 2 – Internal Deployment
During the first phase of the deployment, Dispatcher 1 is removed from the load balancer pool and the replication agent for Publisher 2 is disabled on the author instance.  At this point, users of the website will only be served content from Dispatcher 2 and Publisher 2.  We then deploy our code changes to the author instance and Publisher 1.  Users can then test the website via an internal-only URL to Dispatcher 1 and validate functionality.


[image: ]Phase 3 – Deployment Completion
At this point, we can switch the load balancer over to serve live traffic from Dispatcher 1 and remove Dispatcher 2 from the pool while we upgrade Publisher 2.  The replication agent on the author can also be re-enabled.  Once the testers have validated that Dispatcher 2 is working properly, we add it back to the pool and our deployment is complete.


[bookmark: _Toc293055731]Content Synchronization
There are many approaches that can be taken to synchronize content from production environments to lower environments.  One thing is clear, though.  In order for accurate testing to be performed on code changes, it is imperative that tests are run on production-like content.  For this reason, it is highly recommended that a content synchronization process is defined and adhered to on a regular schedule.  The methods below are several that we have seen our clients be successful with in the past.  The best approach for any given client will vary based on how often their content is updated and the size of their repository.
Note that in all of the cases listed below, we are assuming data synchronization from a production author to a lower author environment.  Once the content has been copied into the author environment, replication should take place in the lower environment for use on the lower environment’s publish instance.
[bookmark: _Toc293055732]Backup/Restore
The simplest approach to synchronizing content between instances is to take a backup of the production author instance and restore it to the lower environment.  Once the restore has taken place, the lower instance’s configurations will need to be updated to ensure that it does not interact with the production environment.  Common areas for configuration include replication agents and web service endpoints.  As an added layer of protection, it is best to setup the network topology such that the lower authoring environment cannot replicate to the production publish servers.
Pros:
· Relatively straightforward
· Allows for constant testing of the backup/restore processes
· Ensures that all content and configurations are included
Cons:
· Since the entire repository is being moved, the size of the content being moved is larger than necessary.
· Updating configurations after restoring the backup is a manual step and thus error prone.
· Servers must be brought offline during the backup and restore operations
[bookmark: _Toc293055733]Content Packages
For customers who have a small amount of data that will need to be synchronized, content packages can sometimes be employed.  We first create a content package on the production author environment with the filter configured with the authored content that we wish to synchronize.  After building and downloading the package, it can then be uploaded and installed on any lower environments.
Pros:
· Straightforward approach
· Package definitions allow us to pick and choose which content to refresh
· Only the needed content is copied over
Cons:
· Only useful for situations in which there is a small amount of content to synchronize
[bookmark: _Toc293055734]Filevault over RCP
Many developers are familiar with filevault (aka vlt) as a method of synchronizing changes between the JCR and their local filesystem.  Vlt also includes the option to synchronize changes over RCP.  Either through the vlt command line or through the new vlt rcp UI tool, content can be extracted from the production instance and copied into a lower environment.  Since this does put some load on the resources of the servers involved, when using this approach it is recommended to copy from production to staging and then from staging to QA, etc.  This will prevent unnecessary load from being placed on the production author environment.
Filevault is included in the crx-quickstart/opt directory.  There are instructions for installing and using vlt at http://docs.adobe.com/docs/en/aem/6-0/develop/dev-tools/ht-vlttool.html.  The vlt rcp UI tool can be downloaded from GitHub at https://github.com/honstar/vault-rcp-ui and is currently being integrated into ACS AEM Tools, which can be downloaded from http://adobe-consulting-services.github.io/acs-aem-tools/.
Pros:
· Works well for large amounts of content
· Only specified content paths are copied over
Cons:
· Can be time consuming
[bookmark: _Toc293055735]Grabbit
Grabbit is a project that was developed by Time Warner Cable for use in their AEM implementation.  They graciously have made the code available on GitHub for the community to use and contribute to.  While this is a new approach and is not officially supported by Adobe, it is a promising alternative and TWC claims that it significantly outperforms Vlt RCP.  Grabbit can downloaded from GitHub at https://github.com/TWCable/grabbit.
Pros:
· Claims to be more performant that vlt rcp.
Cons:
· Developed by a third party, so not officially supported by Adobe
[bookmark: _Toc293055736]Replication
The final recommendation approach involves adding a replication agent to the production author instance to replicate content to the staging author.  This setup can be repeated in lower environments, with the staging author replicating to the QA author, etc.  All content replicated on the production author will automatically be pushed to the staging author.  However, custom code would be required to automatically activate this content to the staging publish servers.  Additionally, when using this method, only activated content will be synchronized to lower environments.
Pros:
· Only updated content is copied over.
· Content is copied as it is activated in production rather than in batches.
Cons:
· Adding a replication agent on the production author increases the overhead required to publish content.
· Custom code must be written to automatically activate content on staging.
[bookmark: _Toc293055737]Comparing Methods
These various synchronization methods are laid out in the following table to allow for easier comparison of the various benefits that they each offer:
	
	Easy to Implement
	Allows testing existing processes
	Ensures all content is included
	Allows for selective content synchronization
	Appropriate for large amounts of content
	Highly Performant
	Supported by Adobe
	Content Activated as it is updated

	Backup/Restore
	X
	X
	X
	
	X
	
	X
	

	Content Packages
	X
	
	
	X
	
	
	X
	

	Vlt rcp
	
	
	
	X
	X
	
	X
	

	Grabbit
	
	
	
	X
	X
	X
	
	

	Replication
	
	
	X
	
	X
	
	X
	X



	AEM 6 CODE PROMOTION & CONTENT SYNCHRONIZATION
	4



	AEM 6 CODE PROMOTION & CONTENT SYNCHRONIZATION
	3



image1.png




image2.png
A

Adobe




image3.jpg




image4.png
*LJ*L_PLJ*LJ

uﬂ_ruﬁ_r v




image5.png
Development Integration
- Build process validation
- Automated test sute execution

Local Sandbox
- Developer writes and debugs code

oA
- Validation testing performed

Staging/UAT
- User acceptance testing performed
- Performance testing performed
- Securiy testing performed

UAT Passed
Performance Passed
Security Passed

Production
- Content authoring
- Live website




image6.png
Author

B

Pubt Pub2
Dispt Disp2
— —





image7.png
Pubt

Dispt

Author





image8.png
Author

Pubt Pub2
- -
Dispt Disp2
 — —

B









