
Headless Adaptive Form
Specification

Table of Contents
Motivation . Ê2

Introduction. Ê3

Versioning. Ê3

Definitions . Ê3

Form Document . Ê3

Form Object . Ê4

Form Field Object . Ê4

Form Panel Object . Ê5

Form Object . Ê6

Form Metadata . Ê6

Form Label . Ê7

File Attachment Field. Ê7

Representation of files . Ê8

Form Field Object . Ê9

Form Field Properties . Ê9

Form Field Constraints . Ê14

Form Field Runtime Properties . Ê16

Form Panel Object . Ê17

Form Panel Properties . Ê17

Form Panel Constraints . Ê18

Visual and Logical Grouping of Fields . Ê19

Repeatable Structures in Form . Ê24

Same Named Elements . Ê25

Events . Ê25

Event Object . Ê26

Default Events. Ê26

Custom Events . Ê28

Response Events . Ê28

Event Handler . Ê28

Global Event Handler . Ê29

Rules . Ê29

Form Runtime Model. Ê30

Accessing an element in the Runtime Model . Ê30

Expression Evaluation. Ê32

1

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY",
and "OPTIONAL" in this document are to be interpreted as described in BCP 14 !

RFC2119 ! RFC8174 ! when, and only when, they appear in all capitals, as
shown here.

Motivation
There exists two Form Implementations to define Forms in JSON with well defined vocabularies
within Adobe : DFL 1.1 ! and AEM Adaptive Form !. DFL 1.1 uses Adobe Sign Expressions, while
Adaptive Form specification uses JCR terminology and embeds JavaScript inside its JSON
representation.

There has been a parallel work going on to define a specification for a new version of PDF Forms !

aka PDF Forms.Next specification which deals with PDF currently.

With this specification we are trying to align the current Adaptive Form Specification with the PDF
Next Specification and add some extra constructs which can be translated as custom properties or
custom events which are supported in PDF Forms.Next specification when rendering the same
Form inside of Acrobat.

There are two motivations behind the creation of this specification

¥ To create a headless representation of Adaptive Forms, so that it can be rendered on multiple
channels

Expression Grammar. Ê33

JMESPath Features. Ê33

Pipes . Ê36

Functions . Ê37

Others . Ê38

Additional Features over JMESPath. Ê38

Differences with JMESPath . Ê43

References . Ê43

Form Data Validation. Ê43

A note about JSON Schema . Ê44

Data Model . Ê48

Data Types . Ê48

Default Data Model . Ê48

Data Bindings . Ê50

Form Creation from Existing Data Models. Ê52

Localization . Ê53

Data Formatting . Ê53

Language and Symbols for Formatting. Ê53

2

https://tools.ietf.org/html/bcp14
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc8174
https://git.corp.adobe.com/dc/dc-forms-runtime/blob/master/docs/DFL-1.1.json
https://git.corp.adobe.com/livecycle/af2-docs/blob/archives/archive/1.0/schema.json
https://git.corp.adobe.com/pages/AiC/pdf-forms-mirror/

¥ having a single specification for JSON based Forms in the future if all the use cases of the AEM
Forms and PDF Forms align.

Introduction
Headless Adaptive Form specifies a mechanism to create a Form or Data Capture Experience using
a JSON representation, which allows rendering that experience across multiple channels.

The Specification can be used by implementors to generate a visual appearance for the Data
Capture Experience in the choice of their language.

A JavaScript and React based implementation of this specification can be obtained at our internal
Git Repository ! with a live playground ! to try out the specification. The status of the
implementation is provided in [Appendix B: Implementation and Examples]

There is a section in the end which compares the current Form Specification with the PDF Forms
Specification : [Appendix A: Comparison with Proposed PDF Forms Specification].

Versioning
The spec is versioned using semantic versioning ! and follows the semver versioning. The
major.minor version of the specification SHALL designate the features that the specification
provides. The .patch version address errors in the document and do not add any new features. The
implementation that supports version 1.0 SHOULD be compatible with all the 1.0.* versions

Every document MUST provide the version of the specification which it complies to in addition to
its own version.

Definitions

Form Document
A document (or a set of document) that defines the Data Capture Experience to be presented to the
user. The Form document uses and conforms to this Form Specification.

The Form Document is a JSON file having a single Form Object. The structure of the document
MUST conform to the JSON Schema of the Form specification which is hosted at git !

A very simple one field Form can be represented in JSON as

3

https://git.corp.adobe.com/livecycle/af2-web-runtime
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/dist/
https://semver.org/
https://git.corp.adobe.com/pages/livecycle/af2-docs/schema/generated/adaptive-form.schema.json

{
Ê "adaptiveform" : "<latest_version>",
Ê "data" : {},
Ê "items" : [{
Ê "name" : "firstName",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {
Ê "value" : "Enter your first name"
Ê }
Ê }],
Ê "metadata" : {
Ê "version" : "1.0.0"
Ê }
}

Form Object
Form Object is the root object in any Form Document. It specifies the version to which the form
conforms to. It contains a collection of Fields optionally grouped in Panels to capture data from the
end user

Form Field Object
A Field is the unit entity in the Form Document and is represented as a JSON Object. A field can
specify one or more of,

! constraints on the data they capture,

! dynamic rules to change their state they have including visibility, enabled, etc.,

! label, help text, etc.,

! handling of any events that can be performed by the end user, like click, focus etc.

A Field that can capture a First Name of a person would look like this

{
Ê "name" : "firstName",
Ê "label" : {
Ê "value" : "Enter your First Name"
Ê },
Ê "fieldType" : "text-input",
Ê "description" : "Your given/first name as it appears on your Driving License",
Ê "type" : "string"
}

The terms Field, Form Field and Adaptive Form Field map to the same term in this specification

4

Form Panel Object
A Form Panel is an entity to group a set of fields logically (to create a complex data type) or visually.
The example below shows a Form Panel to capture address of a person

{
Ê "label" : {
Ê "value" :"Home Address"
Ê },
Ê "name" : "homeAddress",
Ê "fieldType" : "panel",
Ê "items" : [
Ê {
Ê "name" : "houseNumber",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "House Number"}
Ê },
Ê {
Ê "name": "street",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "Street Address"}
Ê },
Ê {
Ê "name": "city",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "City"}
Ê },
Ê {
Ê "name": "state",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "State"}
Ê },
Ê {
Ê "name": "zipCode",
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "Zip Code"},
Ê "pattern" : "^[0-9]{6}$"
Ê }
Ê]
}

5

Form Object
The root object in any Form Document is a Form Object. The object contains the properties
mentioned below. Fields marked as * are required

Property Name Value

adaptiveform* The key identifies the version of the Form
Specification the document complies to.

metadata Form Metadata object

data Data Model of the Form.

items* a JSON array containing Fields or Panels.

lang The language in which the Form was authored
as per the BCP 47 ! tag

title A user friendly title of the Form

description A user friendly description of the Form

action an HTTP/HTTPS endpoint where the data would
be submitted when submit event is triggered

events Events is a JSON Object where keys are the
name of eventName and value is an array of
JSON Formula Expression (or a single JSON
Formula Expression) that determine the action
to perform.

For simplicity a single action can be specified
using a string instead of an array of single
string.

See Events section for more details

Form Metadata

Property Name Value

version the version of the document (which is different
from the version of the Form Specification) to be
interpreted by the application

grammar the grammar along with its version which the
expressions in the Document support. The value
MUST be json-formula-1.0.0.

formattingLanguage The grammar to use for formatting the value in
different contexts. Current value is xfa-picture-
clause

6

https://www.rfc-editor.org/rfc/bcp/bcp47.txt

Form Label
To make Form Fields and Panels accessible, every Field and Panel SHALL have a label. The
implementations MUST ensure that labels and Fields are associated with each other

¥ In Android they should be associated either using the android: hint or android:labelFor
attributes

¥ or aria-labelled-by or for attribute in HTML

The label has the following properties

Property
Name

Description Type Defaults ReadOnly

richText Whether the Label is rich text or not boolean false true

visible whether the label should be visible to
author or not. In case the labels are
hidden, the Field should be able to
specify a mechanism to provide the cue
to the user filling the form.

¥ For HTML, the spec RECOMMENDS
using the aria-labelledBy attribute on
the input elements.

¥ For android, the spec RECOMMENDS
using the android:hint property on
the input element.

boolean true false

value* The content of the label. If the label type
is rich text, the contents will be
considered as Rich Text

string false

{
Ê "name" : "firstName",
Ê "fieldType" : "text-input",
Ê "label" : {
Ê "value" : "First Name"
Ê },
Ê "rules" : {
Ê "label" : "{value : if($required, 'First Name *', 'First Name')}"
Ê }
}

File Attachment Field
File attachment field enables capturing file inputs from user. There are two ways to use a file

7

attachment field

¥ By declaring a string type along a data-url or binary format

{
Ê "fieldType" : "file-input",
Ê "type" : "string",
Ê "format" : "binary"
}

¥ or by specifying type as file

{
Ê "fieldType" : "file-input",
Ê "type" : "file"
}

Multiple files selectors are supported by defining a string[] or file[]

Representation of files

Data URL

Data URLs, URLs prefixed with the data: scheme, allow content creators to embed small files inline
in documents. While using string type along with data-url or binary format to use file attachment,
its value would be stored as per the following regex pattern, /^data:([a-z]+\/[a-z0-9-
+.]+)?;(?:name=(.);)?base64,(.)$/

Example of data url, data:text/plain;name=file1.txt;base64,SGVsbG8sIFdvcmxkIQ==

Storing large dataURIs into form state might slow rendering, hence we need an optimized way to
store files in form state. This implementation of optimization can change as per the channel (for
example) in web this could be the native file object

File Object

Value of file attachment field is always stored as a file object containing the following properties,

¥ name: name of the file stored as string

¥ mediaType: media type of the file as per the IANA media type stored as string

¥ size : size of the file in bytes

¥ data : non-serialized file data, this could be native file object or a URI referring the data.

The contents of file are only serialized during submit (for example) during submission file contents
are sent as multipart/form-data over HTTP / HTTPS

8

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Data_URIs
https://developer.mozilla.org/en-US/docs/Web/API/File
https://www.iana.org/assignments/media-types/media-types.xhtml
https://developer.mozilla.org/en-US/docs/Web/API/File

Form Field Object
A Form Field is the entity with which the user interacts. It is represented as a JSON Object in the
Form Document. The Form Field supports the following properties

Form Field Properties

Property
Name

Description Type ReadOnly

name Name of the Field. The name is used to map the
value of the field to the data model using default
binding rules.

If name is empty string and parent panelÕs data
type is not array, the value is not submitted or
exported out of the Form. (This use case
generally happens for buttons or plain-text
fields)

If the parent panelÕs data type is array, the name
property is ignored

string true

9

Property
Name

Description Type ReadOnly

fieldType Type of widget to show to the user for capturing
the data.

It can be either be one of the types from the list
below or a custom type defined by the user.

¥ text-input

¥ number-input

¥ date-input

¥ file-input

¥ drop-down

¥ radio-group

¥ checkbox-group

¥ plain-text

¥ checkbox

¥ button

¥ multiline-input

¥ panel

Default : is calculated using the [Default Field
Types] Algorithm which is also used when
transforming a JSON Schema document to an
Form Document

string true

:type Custom widget type for a particular field

In case runtime doesnÕt support that custom
type, it needs to fallback to the fieldType
property

string true

label Label to be used for the field Form Label false

description Extra description to be shown to the user to aid
in form filling experience. It can be rich text.
Can be used as help text for a field or a top level
description for a Panel

string false

dataRef To map the fieldÕs value to a property in the data
model.

string true

10

Property
Name

Description Type ReadOnly

visible whether the field should be visible to the user or
not

Default: true

boolean false

enabled whether the field is enabled and takes part in
rules, events etc. A disabled field can have
calculations and custom events can be
dispatched to it

Default: true

boolean false

default The value of the field when no value is provided
by the end user or data model.

The type of this property should match the value
of the type property defined in the Field. If not,
then a type coercion will be tried and if that
fails, the value will be set to null.

oneOf:

¥ string

¥ boolean

¥ number

¥ string[]

¥ boolean[]

¥ number[]

true

emptyValue The value when user has not entered any value
in the field.

Determines what value should be saved when
user has not entered any value in the field. Can
be one of

¥ "null"

¥ "undefined"

¥ "" (empty string) (only valid for dataType =
string)

Default: "undefined"

enum: ["null",
"undefined", ""]

true

readOnly whether the field should be readOnly to end
user or not

Default: false

boolean false

11

Property
Name

Description Type ReadOnly

displayFormat The format in which the value will be displayed
to the user on screen in the field.

For example when using a currency field, the
currency sign should be shown to the user.

string true

editFormat The format in which the value will be edited by
the user.

For instance users in Germany would want to
interchange decimal (.) and comma (,) when
entering numerical values.

string true

dataFormat The format in which the value will be exported
or submitted.

string true

placeholder The placeholder to show on the widget. string true

screenReaderT
ext

a string to indicate the text to be read by screen
readers

string false

rules Rules that modify the property of the object
dynamically.

An author can dynamically change any property
that is defined in the spec as modifiable, i.e.
readOnly is false. The rules are evaluated
whenever the dependency changes. Apart from
properties defined on the field, rules can have
an extra key value which auto computes the
value of the field

The Rules section defines how rules will be
processed in detail

object true

events Events is a JSON Object where keys are the
name of eventName and value is an array of
JSON Formula Expression (or a single JSON
Formula Expression) that determine the action
to perform.

For simplicity a single action can be specified
using a string instead of an array of single
string.

See Events section for more details

object true

12

Property
Name

Description Type ReadOnly

enum A list of options to put restrictions on the
possible values of the field

The type of values in the enum array must
match the value of the type property defined in
the field. In case the type property is not
defined, then the type of elements in the enum
becomes the value of the type property.

If the value of the type property doesnÕt match
with the type of values in the enum array, then a
type coercion will be made to match the type
property. If the coercion is not possible, then the
value will be set to null

array false

enumNames A user friendly text to display for the possible
options to be shown to the end user.

The length of enum and enumNames array must
match. In case the length of enum is greater,
then those will be used as display text for the
user. If the length of enumNames is greater,
those will be discarded.

array false

13

Property
Name

Description Type ReadOnly

constraintMess
ages

An object containing the custom error messages
to be shown to the end user on different
constraint validation. The object MAY contain
any of the following keys,

¥ type

¥ required

¥ minimum

¥ maximum

¥ minLength

¥ maxLength

¥ step

¥ format

¥ pattern

¥ minItems

¥ maxItems

¥ uniqueItems

¥ enforceEnum

¥ validationExpression

object false

Form Field Constraints
Since Form Field capture data from the users, they can also specify the constraints on that data.
When creating a Form Document using Schema, the constraints can be derived from the schema
itself and translated into Field Constraints.

The vocabulary of the constraints is derived from JSON Schema with subtle differences which are
mentioned in the table below

Constraint
Name

Description Type Defaults ReadOnly

type* The Data Types defined in this
specification

string string true

required Indicates whether the value is required
or not. It means that the value SHALL be
non empty string

boolean false false

14

Constraint
Name

Description Type Defaults ReadOnly

pattern As specified in the JSON Schema
specification, the regex against which the
value of the field should be tested with.
The constraint is applicable only for
fields with type string

string true

format formats as specified in JSON Schema
specification. The constraint is applicable
only for fields with type string

string true

maxLength Maximum Length (inclusive) of the data.
The constraint is applicable only for field
with type string

number false

minLength Minimum Length (inclusive) of the data.
The constraint is applicable only for field
with type string

number false

enforceEnu
m

Whether a user can enter a value that is
not present in the enum array.

If set to true, a user will not be able to
enter any other value that is not in the
list of enum. That generally means that
enum is used a aid for users to enter the
value but is not a validation constraint.

The constraint is applicable only if the
enum property is defined on the Field

boolean false false

minimum Minimum value (inclusive) that a user
can enter in the Field. The constraint is
applicable for Fields that have type
number or type string and format date
(i.e. Date Fields)

Date
serialized in
ISO 8601
format or a
number

true

maximum Maximum value (inclusive) that a user
can enter in the Field. The constraint is
applicable for Fields that have type
number or type string and format date
(i.e. Date Fields)

Date
serialized in
ISO 8601
format or a
number

true

exclusiveMi
nimum

Applicable for Date and Number Types.
Minimum value (exclusive) , either date
or number, that can be entered by the
user

Date
serialized in
ISO 8601
format or a
number

true

15

https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--enforce-enum
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--enforce-enum
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--exclusive-minimum
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--exclusive-minimum

Constraint
Name

Description Type Defaults ReadOnly

exclusiveMa
ximum

Applicable for Date and Number Types.
Maximum value (exclusive) , either date
or number, that can be entered by the
user

Date
serialized in
ISO 8601
format or a
number

true

step The step attribute is a number that
specifies the granularity that the value
must adhere to. The step sets the
stepping interval when changing the
value of a Field. If not explicitly included,
step defaults to 1 for number, and 1 day)
for the date input types.

For example, if we have {"type" :
"number", "min" : 10, "step": 2} that
means any even integer, 10 or great, is
valid

number

uniqueItems For Fields or Panel mapped to array type
of properties

boolean false false

minItems For Fields or Panel mapped to array type
of properties

number 0 false

maxItems For Fields or Panel mapped to array type
of properties

number unlimited
(represented
as -1)

false

validationEx
pression

An expression returning boolean value
indicating whether the value in the field
is valid or not

expression true

maxFileSize Maximum file size (in IEC specification)
that a field can accept. The constraint is
applicable for file attachment field

string 2MB false

accept List of standard IANA media types which
field can accept. The constraint is
applicable for file attachment field

array [audio/*,
video/*,
image/*,
text/*,
application/p
df]

false

Form Field Runtime Properties
Form Field would define some runtime properties that can be accessed in the rules but are not
serialized

16

https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--exclusive-maximum
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--exclusive-maximum
https://git.corp.adobe.com/pages/livecycle/af2-web-runtime/story//?path=/story/reference-json-constraints--step
https://en.wikipedia.org/wiki/Template:Quantities_of_bytes
https://www.iana.org/assignments/media-types/media-types.xhtml

Property Value

value The current value of the Field. The property is
serialized in the Data Model

valid The current validation state of the Field.
Whenever the value of the field is changed, and
any of the constraint fails, the value of valid
property is set to false otherwise it remains true.
The value SHALL be undefined untill the value
is changed either by the end user or by means of
importData.

errorMessage The current errorMessage being shown on the
Field. Depending upon the constraint that fails,
the message specified for that constraint using
constraintMessages object is set as the
errorMessage

index The index of the Field within its parent. For the
items inside transparent panels, the index value
is computed after moving the items to its parent.

parent The Parent Panel of the Field/Panel. For the
items inside the transparent panels, the ancestor
of the transparent panel that is not transparent
is returned.

panel The actual parent Panel of the Field/Panel,
whether it is transparent or not

indexInPanel The index within its panel.

Form Panel Object
A Form Panel groups a set of fields logically (to create a complex data type) or visually. It can have a
Data Model, so as to capture a hierarchical structure of data and when it is just used for visual
grouping, it doesnÕt modify the structure of data generated from the Form.

Form Panel Properties
The Panel supports the following Field Properties

¥ label

¥ fieldType where value is a panel

¥ description

¥ dataRef

¥ visible

17

¥ screenReaderText

¥ rules

¥ events

¥ index

¥ parent

¥ name

¥ panel

¥ indexInPanel

Property
Name

Description Type Defaults ReadOnly

items* a JSON array containing Fields or Panels. Array [] depends on
the type
property. if
type is
object, then
items is
fixed but if
type is array,
then fields
in the items
array can be
added as
defined in
Repeatable
Structures in
Form

itemsOrder The property is an array indicate the
order of items to be rendered in the items
object.

array true

Form Panel Constraints
¥ type

" The type property in panel accepts these two values : object or array. The type property
defines the shape of the data model it is bound to or generates.

¥ uniqueItems

¥ minItems

¥ maxItems

18

Visual and Logical Grouping of Fields
There are two use cases of a Panel : to group the Fields or Panels logically or visually.

Logical Grouping

Logical Grouping is done to create hierarchical structure of data. For instance capturing a personÕs
information as per the following hierarchy :

{
Ê "basicDetails": { "name" : "", "age" : 10 },
Ê "educationQualifications" : {"degree" : "", "year" : 1987, "marks" : 80},
Ê "addresses" : [{"city" : "", "state" : ""}, {"city" : "", "state" : ""}]
}

The type property in the Panel defines the data model of the Panel. If the type property is an object,
its data model is object where the keys are the names of fields/panels inside it and the values/data
of those fields/panels are the values of the keys in the data model.

If the type property is an array then the values of the fields/panel inside it are inserted in an array
as per the index of the element in the array and that array becomes the data model of the Panel

A form that creates the data as per the above data hierarchy (using the Default Data Binding Rules)
has the following structure

{
Ê "items": [
Ê {
Ê "name": "basicDetails",
Ê "type": "object",
Ê "fieldType": "panel",
Ê "label": {
Ê "value": "Basic Information"
Ê },
Ê "items": [
Ê {
Ê "name": "name",
Ê "label": {
Ê "value" : "Name"
Ê },
Ê "type": "string",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "age",
Ê "type": "number",
Ê "label": {
Ê "value" : "Age"
Ê },

19

Ê "fieldType": "text-input"
Ê }
Ê]
Ê },
Ê {
Ê "name": "educationQualifications",
Ê "type": "object",
Ê "fieldType": "panel",
Ê "label": {
Ê "value": "Education Details"
Ê },
Ê "items": [
Ê {
Ê "name": "degree",
Ê "type": "string",
Ê "label": {
Ê "value": "Degree"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "year",
Ê "type": "number",
Ê "label" : {
Ê "value": "Year"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "marks",
Ê "type": "number",
Ê "label": {
Ê "value": "Marks"
Ê },
Ê "fieldType": "text-input"
Ê }
Ê]
Ê },
Ê {
Ê "name": "addresses",
Ê "type": "array",
Ê "fieldType": "panel",
Ê "label": {
Ê "value": "Provide all your Address"
Ê },
Ê "items": [
Ê {
Ê "type": "object",
Ê "fieldType": "panel",
Ê "label": {
Ê "value": "Address Details"

20

Ê },
Ê "items": [
Ê {
Ê "name": "city",
Ê "type": "string",
Ê "label": {
Ê "value": "City"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "state",
Ê "type": "string",
Ê "label": {
Ê "value": "State"
Ê },
Ê "fieldType": "text-input"
Ê }
Ê]
Ê }
Ê],
Ê "minItems": 1,
Ê "maxItems": 5
Ê }
Ê]
}

If the hierarchy was not to be created for basicDetails and educationalQualifications, i.e. generating
the following structure

{
Ê "name" : "",
Ê "age" : 10,
Ê "degree" : "",
Ê "year" : 1987,
Ê "marks" : 80
}

the form would be

21

{
Ê "items": [
Ê {
Ê "name": "name",
Ê "label": {
Ê "value" : "Name"
Ê },
Ê "type": "string",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "age",
Ê "type": "number",
Ê "label": {
Ê "value" : "Age"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "degree",
Ê "type": "string",
Ê "label": {
Ê "value": "Degree"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "year",
Ê "type": "number",
Ê "label" : {
Ê "value": "Year"
Ê },
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "marks",
Ê "type": "number",
Ê "label": {
Ê "value": "Marks"
Ê },
Ê "fieldType": "text-input"
Ê }
Ê]
}

Visual Grouping

If the Panel doesnÕt specify a type property, then it cannot have any data and is transparent in the
Form Runtime Model. Though it can still define rules but other Fields in the form cannot access it.

22

The fields inside such a Panel would be accessible as if they are directly under its ancestor which is
not transparent.

A Panel which doesnÕt have a type property is termed as Visual Panel in other parts of this
document.

A common use case of visual grouping is an author wants to capture the data without hierarchy but
they want to capture them in different screens. For instance in the second example above for
personÕs information, they want to capture personal details in one screen the educational details in
second screen and so on, the form would look like

{
Ê "items": [
Ê {
Ê "name": "Screen1",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "name": "name",
Ê "type": "string",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "age",
Ê "type": "number",
Ê "fieldType": "text-input"
Ê }
Ê]
Ê },
Ê {
Ê "name": "Screen2",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "name": "degree",
Ê "type": "string",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "year",
Ê "type": "number",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "marks",
Ê "type": "number",
Ê "fieldType": "text-input"
Ê }
Ê]
Ê },

23

Ê {
Ê "title": "Screen3",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "name": "addresses",
Ê "type": "array",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "type": "object",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "name": "city",
Ê "type": "string",
Ê "fieldType": "text-input"
Ê },
Ê {
Ê "name": "state",
Ê "type": "string",
Ê "fieldType": "text-input"
Ê }
Ê]
Ê }
Ê],
Ê "minItems": 1,
Ê "maxItems": 5
Ê }
Ê]
Ê }
Ê]
}

Repeatable Structures in Form
Another common use case in Forms is to capture the repeatable data ,i.e. multiple addresses,
dependent names, etc. To support that use case, the repeating entity SHALL be wrapped in a Panel
that SHALL have its type propertyÕs value as array.

The last item of the items array of the Panel SHALL repeat based on the minItems and maxItems
property on the Panel. The Panel SHALL receive addItem and removeItem events to add or remove
an instance of the item.

For instance a Field capturing multiple Additional Names can be represented as

24

{
Ê "title": "Additional Names",
Ê "type": "array",
Ê "name": "additionalNames",
Ê "fieldType": "panel",
Ê "items": [
Ê {
Ê "type": "string",
Ê "title": "Name",
Ê "fieldType": "text-input"
Ê }
Ê],
Ê "minItems": 1,
Ê "maxItems": 10
}

Same Named Elements
The items in a Panel need to have unique names. If any two items (either Panel or Field) have the
same name within a given Panel,

¥ they would bind to the same Data Model, leading to same values

¥ Only the first element (sorting them by their index property) would be accessed in the rules.

Events
Form Specification defines an event model to make the form work consistent across devices. The
Form SHALL trigger events in a certain order as defined in this specification. Each event is
categorized by its name, payload or a target object which is the Field/Panel or Form object which is
the source of that event

In the Form Definition, one can define operations that are to be performed whenever an event is
triggered. These operations are termed as Event Handlers.

The event handlers are defined using the events property of the Form or Field object.

The events object is a collection of {key: value} pairs, where key is the name of the event as defined
below and value is a JSON Formula Expression (or an array of JSON Formula Expression) that are
executed whenever that event is triggered.

There will be two types of events, * one which are triggered on all the Fields in depth-first order
starting from the top level Form object and others * which are triggered on a specific Field/Panel
object.

Event processing is asynchronous. Events should be pushed to an event queue and from there they
should be picked in order when the current event processing is over. The dispatchEvent Expression
Grammar Function puts the event handlers in the queue and is also asynchronous

25

Event Object
Each event also exposes an object which can be accessed in the expression as $event. The event
object will have the basic properties

Property value

type the name of the event

target the field element on which the event is triggered.

originalTarget the original element on which the event was triggered. This is needed
when the event propogates down

payload custom payload as defined by the event.

Default Events

load

The event is triggered on the form object when the form load is complete. The event executes on the
form only.

initialize

The event is triggered on all the fields when the form initialisation is complete, which includes

¥ execute any importdata operations made in load event

¥ data is merged on to the client and all the fields have the value as per the data imported into the
form

The event starts from the top level form element and triggers down in depth first order.

change

The change event is triggered on the field whenever the value of the field is changed. It will be
triggered on a Panel whenever a child inside that is added (if the child was repeatable). The payload
for that would be the entire element added.

prevValue Previous value of the field

newValue The new value as entered by the user

focus

The event is dispatched on the field that gets focus. The focus is applicable on panels as well.
Whenever the First field in the panel gets focus, the focus event of the parent is triggered and then
the focus event of the field is invoked

blur

26

The event is dispatched on the field that loses focus. This event is applicable for panel as well.
Whenever the last field in the panel loses focus, the blur event of the field is triggered and then the
blur event of the parent is invoked

click

The event is triggered when user clicks on an element.

invalid

The invalid event is triggered when a FieldÕs value becomes invalid after a change event or
whenever its value property changes (as part of dependency tracking). After the value changes, or
change event is executed, all the constraints are evaluated and in case a constraint fails, invalid
event is fired and may be processed ahead of any other event in the queue. The payload must
contain the status of all the failed constraints that are evaluated.

value Invalid value of the Field

constraints an array of constraints that failed.

messages Message defined by the authors for each
constraint

conditions the value of the constraint defined by the author
that failed.

valid

The valid event is triggered whenever the fieldÕs valid state is changed from invalid to valid.

submit

The submit event is triggered on the Form and submits the form data to configured action. To
trigger the submit event, submitForm function needs to be invoked or one can invoke
dispatchEvent API.

save

The save event is triggered on the Form and saves the form data to AEM. To trigger the save event,
save event is dispatched on Form

reset

The reset event is triggered on the Form and dispatches to all the Fields. The reset event is triggered
at the form level and triggers down in DFS order to each field. The default behaviour of the event is
to reset the value to default Value or pre-filled value which can be cancelled by the author. Since
this event changes the value of the form, all the change events and rules will get triggered.

addItem

27

The event is triggered on a panel to add a new instance of items inside it. The Form Processor adds
a new instance of the field if the maxItems constraint is greater than the count property and
executes the expression specified on the addInstance event. If the processor cannot add a new
instance, the addInstance event is ignored. Authors are required to dispatch this event on the panel
to add a new instance in its item array.

The payload of the addItem is a number indicating the index at which to add the item

removeItem

The event is triggered on a panel to remove an instance of items inside it. The Form Processor
removes a new instance of the field if the minItems constraint is greater than the 0 and less than
the count property and executes the expression specified on the removeInstance event. If the
processor cannot remove an instance, the event is ignored. Authors are required to dispatch this
event on the Panel to remove an instance in its item array.

The payload of the removeItem is a number indicating the index at which to remove the item

error

The error event is triggered at the form level whenever there is any error in Form Processor or
script. Similar to invalid event it may be processed ahead of all the other events in the queue.

Custom Events
Event dictionary can have custom events that are dispatched using dispatchEvent function
dispatchEvent. The event on the Form and Panel will be triggered down

Response Events
Response Events are specific type of Custom Events that are dispatched on the Form after the
Submit or Web Service Request Succeeds or Fails. The Payload of the Response Event is defined as

initiator Initiator of the Submit or Web Service Request

response the response of the Web Service Request as JSON

Event Handler
The Event Handler(s) for any event can be defined in the JSON using the events property of the
Field/Panel object.

The keys in the events object determine the name of the event and value against that key
determines the actions to be performed.

The example below demonstrates how to perform submit on a click of a button

28

{
Ê "name" : "submit_btn",
Ê "fieldType": "button",
Ê "title" : {
Ê "value" : "Submit"
Ê },
Ê "events": {
Ê "click" : "submitForm()"
Ê }
}

Whenever the event is dispatched the expressions defined against that event are evaluated. The
return value of that expression is applied to the field. The return value of the expression can be
either a

¥ null, array, number, string or boolean: The value property of the field is set to the return value

¥ JSON Object: The field json is merged with the returned dictionary

¥ empty Object ({}): the field should not be modified.

Multiple Event handlers are evaluated sequentially and the return value of one is applied to the
field object before evaluating the next expression

{
Ê "fieldType": "button",
Ê "label" : {
Ê "value" : "Submit"
Ê },
Ê "events": {
Ê "click" : ["dispatchEvent('custom:submitStart')", "submitForm()"]
Ê }
}

Global Event Handler
Proposal

Similar to Global Event Handler in HTML an author can define common functionality on events
Globally. For instance if they want to show error only on Focus, they can have a global event
handler for that event which would be applicable for all items of that panel or form.

Rules
The properties of the fields are dynamic and can change on user actions. The Rules property helps
the form author specify how the properties change dynamically. The structure of the rules is pretty
straight forward. It is an object with keys specifying the property name and their value is an
expression as defined by the Expression Grammar

29

{
Ê "name": "SpouseName",
Ê "fieldType" : "text-input",
Ê "label": {
Ê "value": "Spouse Name"
Ê },
Ê "rules" : {
Ê "required" : "maritalStatus == 'married'",
Ê "readOnly" : "someField == 'inactive'"
Ê }
}

The rules are evaluated whenever the dependency changes, for example in the case above,
whenever maritalStatus field changes the required rules is evaluated. Rules on any field that is
dependent on spouseName will also get evaluated after spouseName gets modified

Form Runtime Model
The Form Runtime Model is a memory representation of the Form stored in a tree structure with
Form at the root of the tree. Form Field are the leaves and Form Panels are the internal nodes in the
tree.

The expressions written in rules or events are evaluated against this Runtime Model.

There are two special types of nodes in the Runtime Model :

¥ The Panels that have no type property defined on them.

¥ The Fields or Panels that have no name property, except when they are present in a Panel that
has type property as array

This Form Specification terms these nodes as transparent nodes, i.e. they do not take part in
Expressions but are only required for the View layer to render them on screen. Though they can
define rules or events that are dispatched by the View layer (or when event propagates down via
the dispatchEvent API), they cannot be accessed by other Fields. The fields inside such a Panel
would be accessible as if they are directly under its ancestor which is not transparent.

Accessing an element in the Runtime Model
Since the Form Runtime Model is stored as a Tree Structure with internal nodes are Panels while
the leaf nodes are Fields. The items of a Panel are stored as its child nodes in the structure.

Each node in the leaf has a name property (except for Panels). Every node has an Expression by
which it can be accessed in the grammar which is defined as the names of all the nodes in its path
from the rootNode joined by the period character '.'. The unnamed elements except when they are
in an array type are ignored from this construction. If the names contain characters not in the
character set [a-zA-Z0-9_$], then it has to be put inside "" (double quotes) as required by the JSON
Formula Grammar.

30

The name of the root node is $form

If in the path there exists a panel with type property as array then its items are referred to using the
index notation.

{
Ê "fieldType": "panel",
Ê "type" : "object",
Ê "name": "accidentData",
Ê "items" : [{
Ê "name" : "fullName",
Ê "fieldType" : "panel",
Ê "type" : "object",
Ê "items" : [{
Ê "fieldType" : "panel",
Ê "items" : [{
Ê "name" : "firstName"
Ê }]
Ê }]
Ê }, {
Ê "name" : "accidentCoordinates",
Ê "fieldType" : "panel",
Ê "type" : "array",
Ê "items" : [{
Ê "label" : {
Ê "value": "latitude"
Ê },
Ê "fieldType" : "number-input"
Ê },
Ê {
Ê "label" : {"value": "longitude"},
Ê "fieldType" : "number-input"
Ê }]
Ê },
Ê {
Ê "name" : "sp3cial'Field",
Ê "fieldType" : "number-input"
Ê }
]
}

In the example above (only relevant properties are shown for brevity), the Field firstName can be
accessed using its path as $form.accidentData.fullName.firstName in the JSON Formula expressions
while the latitude and longitude fields will be accesed as
$form.accidentData.accidentCoordinates[0] and $form.accidentData.accidentCoordinates[1]. While
the field with special characters need to be accessed as $form."sp3cialÕField"

Apart from the absolute path, a Form Field can access the following elements directly by their name

¥ direct children and the children of their transparent child,

31

¥ siblings

Expression Evaluation
Expression Queue

The Implementations must manage an Expression Queue, and expressions should be picked from
the top of the queue for processing. Whenever an expression has to be evaluated, it must be placed
at the end of the queue.

Dependent Rules

A Field can define rules to dynamically update its property depending on the value of some other
Field. The Expression that defines how that property is updated is termed as Depdendent Rule in
this section.

Expression Processing

The Expressions in the Expression Queue are processed after a user event is generated by the UI
and completes until there are no more expressions in the queue. When a user event, like change or
click, is captured : the expression to be evaluated must be put in an Event Queue and then
evaluated. If a FieldÕs value changes either using expression or any event, then all its dependent
rules are put at the end of the event queue.

Execution Order

The Execution order is maintained by how elements are being put in the Queue. Consider the Form

{
Ê "items" : {
Ê "A" : {},
Ê "B" : {
Ê "rules" : { "value" : "C + A"}
Ê },
Ê "C" : {
Ê "rules" : { "value" : "'1' + A"}
Ê }
Ê }
}

When the Field A changes, a simple queue implementation may lead to the following evaluation
order : B, C, B.

To avoid that, when a rule expression needs to be evaluated, it checks whether any of its
dependency is in the Queue or not, and if it is then it puts itself back in the Queue. This can be
optimized by doing it at the time of putting the expressions in the Queue as well.

Cycling Dependency

The count of an element being put inside the Queue must be managed (except when it was done to
avoid unnecessary calculations) from the time the Queue Processing starts till the Queue becomes
empty. If the count reaches a threshold, say 10, it should not be put inside the Queue again, until the

32

Queue becomes empty.

Expression Grammar
The Form Specification uses JSON Formula ! for its expressions. JSON Formula is an expression
language used by the PDF Forms.Next specification. Using the same language in this Form
Specification ensures that the expressions in Form aligns and can be used when the forms are
rendered in PDF.

JSON Formula is developed as an combination of the JSON query language JMESPath. ! and the
spreadsheet formula specification OpenFormula !

JMESPath allows you to perform different operations on JSON data. The language is expressive
enough to support most required operations on JSON data without exposing the engine processing
the expressions to security attacks.

The OpenFormula functions added to JSON Formula enable additional operations which were not
possible with JMESPath.

JSON Formula comprises of the following additional features from JMESPath:

¥ OpenFormula Functions

¥ Additional Operators

JMESPath Features
This section provides a very quick overview of the features of JMESPath relevant for Forms.

A detailed tutorial on JMESPath can be found here !

For simplicity of understanding, the examples in this section are example JSONs and do not
represent valid Forms.

Query

The . operator is used to access properties within an input JSON.

JSON:

{
Ê "A" : {
Ê "B": {
Ê "C": 10
Ê }
Ê }
}

Expression: A.B.C

33

https://github.com/adobe/json-formula/
https://jmespath.org/
https://www.oasis-open.org/committees/download.php/16826/openformula-spec-20060221.html
https://jmespath.org/tutorial.html

Result: 10

Slicing

Arrays can be sliced using the common syntax [start:stop:step].

JSON:

{
Ê "A" : [0, 1, 2, 3, 4]
}

Expression: A[0:3]

Result: [0, 1, 2]

Expression: A[::-1]

Result: [4, 3, 2, 1, 0]

List/Slice Projections

Projections are used to collect nested data by iterating sub-elements.

JSON:

{
Ê "A" : [
Ê { "ID": 1 },
Ê { "ID": 2 },
Ê { "ID": 3 },
Ê { "ID": 4 }
Ê]
}

expression: A[*].ID

Result: [1, 2, 3, 4]

Expression: A[0:2].ID

Result: [1, 2]

Object Projections

Object projections are similar to list projections but they work on objects.

JSON:

34

{
Ê "A" : {
Ê "B" : { "ID": 1 },
Ê "C" : { "ID": 2 },
Ê "D" : { "ID": 3 },
Ê "E" : { "ID": 4 }
Ê }
}

Expression: A.*.id

Result: [1, 2, 3, 4]

Nested Projections

Both list/slice projections and object projections can be nested to multiple levels.

Flatten Projection

The [] syntax can be used to flatten the results provided by nested projections.

JSON:

{
Ê "A": [
Ê {
Ê "B": [
Ê {"ID": "1"},
Ê {"ID": "2"}
Ê]
Ê },
Ê {
Ê "B": [
Ê {"ID": "3"},
Ê {"ID": "4"}
Ê]
Ê }
Ê]
}

Expression: A[*].B[*].ID

Result:

35

[
Ê ["1", "2"],
Ê ["3", "4"]
]

Expression: A[*].B[].ID

Result: ["1", "2", "3", "4"]

Filter Projection

Use the ? operator inside projections to filter them based on a provided condition.

JSON:

{
Ê "A": [
Ê {
Ê "B": [
Ê {"ID": 1},
Ê {"ID": 2}
Ê]
Ê },
Ê {
Ê "B": [
Ê {"ID": 3},
Ê {"ID": 4}
Ê]
Ê }
Ê]
}

Expression: A[*].B[?ID==`3`].ID

Result: [[], [3]]

Expression: A[*].B[?ID==`3`][].ID

Result: [3]

Pipes
The | operator can be used to stop execution of a projection and send the output as in input to
another sub-expression.

JSON:

36

{
Ê "A": [
Ê {
Ê "B": [
Ê [1, 2, 3],
Ê [4, 5, 6]
Ê]
Ê },
Ê {
Ê "B": [
Ê [7, 8, 9]
Ê]
Ê }
Ê]
}

The following Expression: A[*].B[][0]

Result: [1, 4, 7]

Note, how the projection continues in the above expression. Pipes can be used to stop the
projection.

Expression: A[*].B[] | [0]

Result: [1, 2, 3]

Functions
The following functions are supported by JMESPath. Each function call enforces the types of the
parameters passed to the function.

¥ abs

¥ avg

¥ contains

¥ ceil

¥ ends_with

¥ floor

¥ join

¥ keys

¥ length

¥ map

¥ max

¥ max_by

37

¥ merge

¥ min

¥ min_by

¥ not_null

¥ reverse

¥ sort

¥ sort_by

¥ starts_with

¥ sum

¥ to_array

¥ to_string

¥ to_number

¥ type

¥ values

Others
In addition to the above, JMESPath supports other features like multi-selects, expression references,
etc. Refer to JMESPath documentation for more details.

Additional Features over JMESPath
This section describes the additional functionalities in JSON Formula which are not part of
JMESPath.

Operators

The following operators are supported:

¥ + addition

¥ - subtraction

¥ * multiplication

¥ / division

¥ ^ power

¥ < less than

¥ > greater than

¥ ! less than or equal to

¥ >= greater than or equal to

¥ != not equals

38

¥ <> not equals

¥ == equals

¥ % remainder

¥ ! unary not

¥ & string concatenation

Some examples are provided below:

JSON:

{
Ê "A": 9,
Ê "B": 2,
Ê "C": "first",
Ê "D": " second"
}

Expressions:

39

exp> A + B
res> 11

exp> A - B
res> 7

exp> A * B
res> 18

exp> A / B
res> 4

exp> A ^ B
res> 81

exp> A % B
res> 1

exp> A < B
res> false

exp> A > B
res> true

exp> A == B
res> false

exp> !(A == B)
res> true

exp> C & D
res> "first second"

Functions Extensions

In addition to the functions specified in JMESPath, the following extra functions are added to JSON
Formula

Function Signature Description

casefold string casefold(string $input) Return a lower-case string using
locale specific mappings.

toMap object toMap(string $key, any
$value)

Create an object with the given
key and value.

and boolean and(Éany) Returns the logical AND result
of all parameters.

or boolean or(Éany) Returns the logical OR result of
all parameters.

40

not boolean not(any $input) The logical NOT applied to the
input parameter.

true boolean true() Returns boolean true.

false boolean false() Returns boolean false.

if any if(boolean $condition, any
$true, any $false)

Return one of two values,
depending on a condition.

substitute string substitute(string
$text, string $old, string
$new)

Returns input text, with text old
replaced by text new (when
searching from the left).

value any value(object|array input,
string|integer index)

Perform an indexed lookup on
a map or array.

lower string lower(string $value) Convert string to lowercase.

upper string upper(string $upper) Convert string to uppercase.

exp number exp(number $power) Return the result of constant e
raised to power.

power number power(number $base,
number $power)

Return the result of base raise to
power.

find number find(string $query,
string $text [, number $start
= 0])

Return the starting position of
query in text starting from
position start. Returns null if
no matches are found.

left string left(string $text [,
number $length = 1])

Returns length number of
characters of text from the left.

right string right(string $text [,
number $length = 1])

Returns length number of
characters of text from the
right.

mid string mid(string $text,
$number start, number $length)

Returns length number of
characters of text starting from
start.

proper string proper(string $text) Returns text with first
character of every word
converted to uppercase and the
rest converted to lowercase.

rept string rept(string $text,
number $count)

Returns text repeated count
number of times.

replace string replace(string $text,
number $start, number $length,
string $new)

Returns text replacing length
characters at starting at postion
start with new.

round number round(number $num,
number $precision)

Rounds num to precision
specified by precision.

41

sqrt number sqrt(number $num) Returns the square root of num.

stdevp number stdevp(array $values) Returns the standard deviation
of values.

stdev number stdev(array $values) Returns the sample standard
deviation of values.

trim string trim(string $text) Remove leading and trailing
spaces, and replace all internal
multiple spaces with a single
space.

trunc number trunc(number $num,
number $digits)

Truncates num to the specified
digits.

charCode string charCode(number $value) Returns the character
represented by numeric value.

codePoint number codePoint(string $text) Returns the code point of the
first character of text.

date number date(number $year,
number $month, number $day)

Returns the date
representation.

day number day(number $datetime) Extracts the day from datetime.

month number month(number $datetime) Extracts the month from
datetime.

year number year(number $date) Extracts the year from datetime.

time number time(number $hour,
number $minute, number
$second)

Returns the time
representation.

hour number hour(number $datetime) Extracts the hours from
datetime .

minute number minute(number
$datetime)

Extracts the minutes from
datetime.

second number second(number
$datetime)

Extracts the seconds from
datetime.

now number now() Returns the current local date
time representation.

today number today() Returns the current local date
representation.

weekday number weekday(number
$datetime, number $type)

Returns the weekday
corresponding to datetime.

The below functions are not part of JSON Formula default implementation but have to be added as
an extension to the available functions by the implementation.

Function Signature Description

42

validate validate([any $element =
undefined])

Run validation on $element.
RunÕs validation on the entire
form if element is not provided.

getData any getData() Return the FormÕs data

submitForm submitForm(string $success,
string $failure [, string
$submit_as = 'json', any $data
= null])

Trigger a Form submission. The
$success event will be triggered
on success. The $failure event
will be triggered on failure.
Users can optionally specify
what to submit via the $data
parameter.

request request(string $uri, string
$httpVerb, object $payload,
string $success, string
$failure

Make a HTTP request of type
$httpVerb to $uri with data
$payload. The $success event
will be triggered if the request
succeeds. The $failure event
will be triggered in case of
failure.

dispatchEvent dispatchEvent(any $element,
string $eventName [, any
$payload])

Dispatches an event of type
$eventName on element
determined by $element. The
optional $payload will be made
available to the expressions
handling the event.

Differences with JMESPath
Because JSON Formula is an extension to the functionality of JMESPath, there are cases where due
to the functionality extension some expressions behave differently in JMESPath and JSON Formula.
This section will capture any such identified differences. * The integer 0 is treated as a false value
where a boolean is required. * Function arguments are coerced to compatible types. This leads to
certain invalid expressions of JMESPath becoming valid JSON-Formula expressions. * Some invalid
expressions return null instead of a syntax error.

References
An antlr grammar is hosted on Git !

Form Data Validation
Form can be created from a schema which can be either JSON Schema, XSD or any other schema
definition that may come in the future. In addition to that a Form SHALL also export a JSON
Schema that define the *structure* of the data that it exports. But that schema only SHOULD not be
used to validate the Form Data for a bunch of reasons.

43

https://github.com/adobe/json-formula/blob/main/antlr/JSONFormula.g4

If the implementation chooses to only implement schema validations it SHALL specify the same
and not support the validationExpression construct of this Form specification.

A note about JSON Schema
There are many technologies that use JSON schema terminology to represent Forms. JSON Schema
introduces itself as a JSON media type for defining the structure of JSON data. It is in fact a great
choice to define the structure of a data and validate it.

It provides a lot of functionality, but there are two problems when using JSON Schema vocabulary
as a Form here

¥ It is not a good fit for defining UI choices to take when capturing that data.

¥ The entire data instance is validated by the JSON Schema. It cannot validate, in isolation, a
single value in the document. This limitation requires generating entire data for throwing
validations errors, leading to performance issues for Forms having 100s of Fields.

¥ It cannot perform validations based on the value of some other key, for instance an Insurance
Form where total share of all the nominees should be less than 100. There was a proposal for
the same in v5 draft !, but was never supported.

There have been open source contributions which extend JSON Schema with a vocabulary to do
that, notably

¥ React JSON Schema Form !

¥ JSON Forms !

¥ Vuetify-JSONSchema Form !

JSON Forms and React JSON Schema Form define a separate UI Schema whose elements point to the
JSON Schema. Though the approach is good, but is hard to define a vocabulary to validate such a
document with a schema validator.

Vuetify Forms provide a much richer functionality but does not have a proper grammar since it
defines certain form patterns that can be achieved by the JSON Schema implementation and one
needs to understand those patterns to implement a rendition in a different channel.

All of them are creating a JSON Schema to create a Form which we were not interested in, but our
goal is to create a JSON to represent a User Experience Schema.

Just to complete this section, here are two examples and how they can be represented in the
various technologies.

Choosing Different properties depending on a previous selection

44

https://github.com/json-schema-org/json-schema-spec/issues/51
https://rjsf-team.github.io/react-jsonschema-form/
https://jsonforms.io/
https://koumoul-dev.github.io/vuetify-jsonschema-form/latest/

JSON Schema Representation for dynamic properties

{
Ê "oneOf": [
Ê {
Ê "title": "US",
Ê "properties": {
Ê "country": {
Ê "type": "string",
Ê "const": "US"
Ê },
Ê "state": {
Ê "type": "string",
Ê "title": "State"
Ê },
Ê "zipCode": {
Ê "type": "string",
Ê "title": "Zip Code"
Ê }
Ê }
Ê },
Ê {
Ê "title": "Canada",
Ê "properties": {
Ê "country": {
Ê "type": "string",
Ê "const": "Canada"
Ê },
Ê "province": {
Ê "type": "string",
Ê "title": "Province"
Ê },
Ê "postalCode": {
Ê "type": "string",
Ê "title": "Postal Code"
Ê }
Ê }
Ê }
Ê]
}

Form Document for the Same Example above

{
Ê "items": [
Ê {
Ê "name": "country",
Ê "label" : {"value": "Country"},
Ê "type" : "string",
Ê "fieldType" : "text-input"

45

Ê },
Ê {
Ê "name" : "state",
Ê "label" : {"value":"State"},
Ê "fieldType" : "text-input",
Ê "type" : "string",
Ê "rules" : {
Ê "required" : "$form.country.value == 'USA'",
Ê "visible" : "$field.required"
Ê }
Ê },
Ê {
Ê "name" : "province",
Ê "label" : {"value": "Province"},
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "rules" : {
Ê "required" : "$form.country.value == 'CANADA'",
Ê "visible" : "$field.required"
Ê }
Ê },
Ê {
Ê "name" : "zipCode",
Ê "label": {"value": "Zip Code"},
Ê "type" : "string",
Ê "fieldType" : "text-input",
Ê "rules" : {
Ê "required" : "$form.country.value == 'USA'",
Ê "visible" : "$field.required"
Ê }
Ê },
Ê {
Ê "name" : "postalCode",
Ê "type" : "string",
Ê "label": {"value": "Postal Code"},
Ê "fieldType" : "text-input",
Ê "rules" : {
Ê "required" : "$form.country.value == 'CANADA'",
Ê "visible" : "$field.required"
Ê }
Ê }
Ê]
}

Controlling the number of values in an array depending upon some other
value

JSON Schema representation for dependent values

{

46

Ê "properties" : {
Ê "numberOfDependents" : {
Ê "type" : "number"
Ê },
Ê "dependents" : {
Ê "items" : {
Ê "type" : "string"
Ê }
Ê }
Ê },
Ê "dependentSchema" : {
Ê "numberOfDependents" : {
Ê "allOf" : [
Ê {
Ê "if" : {
Ê "properties" : {
Ê "numberOfDependents": {
Ê "const" : 1
Ê }
Ê }
Ê },
Ê "then" : {
Ê "properties" : {
Ê "dependents": {
Ê "minItems" : 1
Ê }
Ê }
Ê }
Ê },
Ê {
Ê "if" : {
Ê "properties" : {
Ê "numberOfDependents": {
Ê "const" : 2
Ê }
Ê }
Ê },
Ê "then" : {
Ê "properties" : {
Ê "dependents": {
Ê "minItems" : 2
Ê }
Ê }
Ê }
Ê },
Ê]
Ê }
Ê }
}

47

Form Document for the above use case

{
Ê "items" : [
Ê {
Ê "name": "numberOfDependents",
Ê "type" : "number",
Ê "fieldType" : "number-input"
Ê },
Ê {
Ê "name": "dependents",
Ê "fieldType" : "panel",
Ê "items" : [{
Ê "type" : "string",
Ê "fieldType" : "text-input"
Ê }],
Ê "rules" : {
Ê "minItems" : "$form.numberOfDependents.value",
Ê "maxItems" : "$form.numberOfDependents.value"
Ê }
Ê }
Ê]
}

Data Model
An Adaptive Form allows capturing data from the end user. It SHALL export a schema that can
specify the structure of that Data Model. Additionally, the implementations MAY choose to add

Data Types
The Data Types in the Data Model SHALL conform to the following data types defined in the JSON
Standard !

¥ string

¥ number

¥ boolean

¥ integer which is a JSON number without the fraction part

¥ object

¥ array : only homogenous arrays of the types mentioned above are supported

Default Data Model
The structure/hierarchy of the Data Model by default is same as the structure of the Form Runtime
Model, with the transparent nodes removed altogether from the Data Model. When the Data Model

48

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/

is serialized it is represented as the data property in the Adaptive Form Object.

The top level entity in the Data model is mapped to the Form Object which is present as the data
property in the Form Object.

The Field/Panel in the Form object MAY map to a property in the FormÕs Data Model. By mapping,
the value entered by the user in the field will be set to the value of that property in the Data Model.

The mapping can be defined implicitly using the name of the field or explicitly using the dataRef
property.

The Fields SHALL only map to properties in its Parent data model that have the following data
types

¥ string

¥ boolean

¥ number

¥ integer

¥ array of string : string[]

¥ array of number : number[]

¥ array of boolean : boolean[]

¥ array of integer : integer[]

A Panel SHALL have a default Data Model whose shape can either be an Object or an Array as
defined by type property in the Panel. The Fields inside the Panel will map in that Data Model using
their name, unless they have a dataRef property defined on them.

A Panel SHALL only map to the properties in the data whose value is either an object or an array.
Any other mapping would be considered invalid and the Fields inside that panel SHALL not be
bound to any entity in the data model,unless there is explicit mapping defined using the dataRef
property.

When a Panel SHALL define an explicit binding, its Data Model would be a merge of its default and
explicit Data Models, and in case of collision, the properties of implicit Data Model will take
precedence

For example, the following Form

49

{
Ê"items": [
Ê {
Ê "name" : "name",
Ê "fieldType" : "text-input",
Ê "label" : {"value": "Name"}
Ê },
Ê {
Ê "name" : "dependents",
Ê "fieldType" : "panel",
Ê "label" : {"value": "Dependent Names"},
Ê "minItems" : 1,
Ê "items" : [{
Ê "fieldType" : "text-input",
Ê "label" : {"value": "Name"},
Ê "type" : "string"
Ê }]
Ê }
Ê]
}

can have the following data model

{
Ê "name" : "john doe",
Ê "dependents" : ["rob doe"]
}

Data Bindings
In majority of the use cases, the structure of Form doesnÕt match the structure of its Data Model. To
support that, this Form specifications provides a keyword dataRef which specifies an explicit
binding of a Form Field with the Data Model.

The Specification supports three types of Data Bindings: None Binding, Name Bindings and Explicit
Bindings.

Name Bindings

Be default the Name of the Form Element is used to bind to the property in Data Model of its
Ancestor. For a Field/Panel the Name Binding is done relative to the Data Model of its closest Parent
Panel in the hierarchy which has not defined None Binding.

"
In the current AEM Implementation Name Bindings resolve to a separate section
of the Data Model and are not merged with the explicit Data Model. The separate
Section is termed as the Unbound Section of the Data Model.

50

None Bindings

A Form element can specify none binding by setting the value in dataRef as the JSON value null.
When a Field specifies None Bindings then its value is not captured in the Data Model and is not
submitted. When a Panel specifies None Bindings then all its children also have None Bindings.

A Form MUST not have None Bindings

"
In the current AEM Implementation, When a Panel specifies None Bindings, its
Name Bindings are not merged with the ParentÕs Data Model, but resolve to the
unbound section of the Data Model

Explicit Bindings

A Form element can bind to a property in the Data Model using explicit binding by setting the value
of the dataRef property to a JSON Formula expression pointing to an element in the Data Model. For
the purpose of the dataRef only a subset of rules from the JSON Formula grammar are used with
two differences (as defined below)

grammar AFDataRef;

dataref : expression EOF ;

expression
Ê : expression '.' identifier # chainExpression
Ê | expression bracketSpecifier # bracketedExpression
Ê | bracketSpecifier # bracketExpression
Ê | identifier # identifierExpression;

bracketSpecifier
Ê : '[' INT ']' # bracketIndex
Ê | '[' '*' ']' # bracketStar;

identifier
Ê : NAME
Ê | STRING;

NAME : [a-zA-Z_] [a-zA-Z0-9_]* ;

fragment INT
Ê : '0'
Ê | [1-9] [0-9]*
Ê ;

STRING
Ê : '"' (ESC | ~ ["\\])* '"';

The bracket specifier doesnÕt support Negative Integers but only +ve Integers

51

creates a new element in the array and the last entry is mapped to the Field/Panel. If the array
doesnÕt exist a new array is created with single value and that value is mapped to the Form

In case the element doesnÕt exist in the data model, it SHALL be created in the Data Model

Form Creation from Existing Data Models

"
PDF Forms.Next spec doesnÕt talk about Data Schema but it is needed in Adaptive
Forms.

Form Document SHALL be created from an existing Schema.The Implementations SHOULD atleast
provide the current level of support that exists in AEM mentioned below

JSON Schema

When the Form is created from a JSON Schema the following validations in the Schema SHALL be
honored by the implementations as per the following guidelines

¥ Type construct SHALL be honored when it is a string value. i.e. types : [string, boolean]
SHALL be ignored.

¥ Validations construct defined for JSON types number, string and boolean SHALL be honored.

¥ enum constraint SHALL be honored

¥ Structure of the Data Model SHALL conform to the Schema.

¥ minItems, maxItems, uniqueItems Validations defined in the array types SHALL be honored.

Any other construct not mentioned above SHALL be left to the discretion of the implementation.

FDM

When the Form is created from FDM, the data SHALL conform to the FDM completely

XSD

When the Form is created from a XSD, then the validations in the Schema SHALL be honored by the
implementation as per the following guidelines

¥ The Form SHALL support the following types from the SCHEMA

" xs:string

" xs:boolean

" xs:unsignedInt

" xs:int

" xs:decimal

" xs:date

" xs:enumeration

52

" Any complex type element

¥ use=required constraint SHALL be honored for all the Types

¥ default constraint as defined in the XSD specification

¥ minOccurs and maxOccurs constraint defined for Complex Element

¥ The other constraints that SHALL be honored by the Form are totalDigits, maximum, minimum,
exclusiveMaximum, exclusiveMinimum, minLength, maxLength, length, fractionDigits

¥ pattern constraint when it is a Regular Expression conforming to ECMA-262, section 21.2.1 !

Localization
Localization is the process of adapting an application for a particular language or region. It
includes translating text content (visible or non-visible), as well as adapting date formatting,
number formatting, collation and sorting, text search, and more.

Properties like label, description, placeholder, enumNames, enum and screenReaderText should be
localized based on the language or region.

Data Formatting
In Adaptive Forms, we allow users to enter and see value in their choice of format, while authors
can specify the format in which these values are saved in the backend. We support

Edit Format

The format in which the values are entered by the user in the Field. This is represented by the
editFormat property in the Field

Display Format

The format in which the values are displayed to the user when they have exited the Field. It can be
provided using the displayFormat property on the Field

Data Format

The Format in which the values are displayed to the user when it is submitted or exported as
represented in the Data Model.

Language and Symbols for Formatting
This section is under development

We are currently using XFA Picture Clause ! to define the formats but it is going to change.

DFL 1.1 uses unicode CLDR !.

53

https://262.ecma-international.org/11.0/
https://helpx.adobe.com/livecycle/help/mobile-forms/picture-clause-support.html
https://cldr.unicode.org/translation/date-time/datetime-symbols

	Headless Adaptive Form Specification
	Table of Contents
	Motivation
	Introduction
	Versioning
	Definitions
	Form Document
	Form Object
	Form Field Object
	Form Panel Object

	Form Object
	Form Metadata

	Form Label
	File Attachment Field
	Representation of files

	Form Field Object
	Form Field Properties
	Form Field Constraints
	Form Field Runtime Properties

	Form Panel Object
	Form Panel Properties
	Form Panel Constraints
	Visual and Logical Grouping of Fields
	Repeatable Structures in Form

	Same Named Elements
	Events
	Event Object
	Default Events
	Custom Events
	Response Events

	Event Handler
	Global Event Handler

	Rules
	Form Runtime Model
	Accessing an element in the Runtime Model

	Expression Evaluation
	Expression Grammar
	JMESPath Features
	Pipes
	Functions
	Others
	Additional Features over JMESPath
	Differences with JMESPath
	References

	Form Data Validation
	A note about JSON Schema

	Data Model
	Data Types
	Default Data Model
	Data Bindings
	Form Creation from Existing Data Models

	Localization
	Data Formatting
	Language and Symbols for Formatting

