
 502

Passing credentials using WS-Security headers

When invoking a LiveCycle ES service using web services, you can use WS-Security headers to pass client
authentication information that is required by LiveCycle ES. WS-Security defines SOAP extensions to
implement client authentication, message confidentiality, and message integrity. As a result, you can
invoke LiveCycle ES services when LiveCycle ES is deployed as stand-alone server or within a clustered
environment.

How you pass WS-Security headers to LiveCycle ES depends on whether you are using Axis-generated Java
classes or a .NET client assembly that consumes a service’s native SOAP stack.

Note: As an example of invoking a service using WS-Security headers, this topic encrypts a PDF document
with a password by invoking the Encryption service.

Passing client authentication using Axis-generated Java classes
To pass client authentication information when using Axis-generated Java classes, you can use
WS-Security Axis handlers that require the following WSS4J (Web Service Security for Java) libraries:

● WSS4J

● XML Security

You can download these libraries at http://ws.apache.org/wss4j/package.html.

After you down the libraries, include the following JAR files in your class path:

● wss4j-1.5.1.jar

● commons-logging.jar

● xmlsec-1.3.0.jar

Deployment descriptor file

When using a WS-Security header to pass client authentication to LiveCycle ES, you must create a
deployment descriptor file (client_deploy.wsdd). This file contains information such as the user name and
the name of a security callback class that is used to send a password to LiveCycle ES.

The following code shows the format of the client_deploy.wsdd file:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <transport name="http"
pivot="java:org.apache.axis.transport.http.HTTPSender"/>
 <globalConfiguration >
 <requestFlow >
 <handler type="java:org.apache.ws.axis.security.WSDoAllSender" >
 <parameter name="action" value="UsernameToken"/>
 <parameter name="passwordType" value="PasswordText"/>
 <parameter name="user" value="administrator"/>
 <parameter name="passwordCallbackClass" value="PWCallBack"/>
 </handler>

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Generating Axis library files required to invoke the Encryption service 503

 </requestFlow >
 </globalConfiguration >
</deployment>

Callback class

You must also create a callback class whose name is specified in the client_deploy.wsdd file. Notice that
the name of the callback class in the client_deploy.wsdd file is PWCallBack and the user name is
administator. This callback class must implement the
javax.security.auth.callback.CallbackHandler interface.

The following Java code shows the syntax of the PWCallBack class:

import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import org.apache.ws.security.WSPasswordCallback;

public class PWCallBack implements CallbackHandler {

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {
if (callbacks[i] instanceof WSPasswordCallback) {

WSPasswordCallback pc = (WSPasswordCallback)callbacks[i];

// set the password given a username
if ("administrator".equals(pc.getIdentifer())) {

pc.setPassword("password");
}

} else {
throw new UnsupportedCallbackException(callbacks[i], "Unrecognized

Callback");
}

}
}

}

Generating Axis library files required to invoke the Encryption service

You can generate Axis Java library files that consume the Encryption service WSDL by performing the
following steps:

1. Install Apache Ant on the client computer. It is available at http://ant.apache.org/bindownload.cgi.

● Add the bin directory to your class path.

● Set the ANT_HOME environment variable to the directory where you installed Ant.

2. Install Apache Axis 1.4 on the client computer. It is available at http://ws.apache.org/axis/.

3. Set up the class path to use the Axis JAR files in your web service client, as described in the Axis
installation instructions at http://ws.apache.org/axis/java/install.html.

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Generating Axis library files required to invoke the Encryption service 504

4. Use the Apache WSDL2Java tool in Axis to generate Java proxy classes. You must create an Ant build
script to accomplish this task. The following script is a sample Ant build script named build.xml:

<?xml version="1.0"?>
<project name="axis-wsdl2java">

<path id="axis.classpath">
<fileset dir="C:\axis-1_4\lib" >

<include name="**/*.jar" />
</fileset>
</path>

<taskdef resource="axis-tasks.properties" classpathref="axis.classpath" />

<target name="repository-wsdl2java-client" description="task">
<axis-wsdl2java

output="C:\JavaFiles"
testcase="false"
serverside="false"
verbose="true"
username="administrator"
password="password"
url="http://localhost:8080/soap/services/EncryptionService?WSDL" >

</axis-wsdl2java>
</target>

</project>

Within this Ant build script, notice that the url property is set to reference the Repository WSDL
running on localhost. The username and password properties must be set to a valid LiveCycle ES user
name and password.

5. Create a BAT file to execute the Ant build script. The following command can be located within a BAT
file that is responsible for executing the Ant build script:

ant -buildfile "build.xml" encryption-wsdl2java-client

This Ant build script generates JAVA files that can invoke the Encryption service. The JAVA files are written
to the C:\JavaFiles folder as specified by the output property. To successfully invoke the Encryption
service, you must import all of these JAVA files into your class path. By default, these files belong to a Java
package named com.adobe.idp.services. It is recommended that you place all of these CLASS files
into a JAR file and then import the JAR file into your client application’s class path.

Amend the URL in the EncryptionServiceServiceLocator class to include ?blob=base64 to
ensure that the BLOB object returns binary data. That is, in the EncryptionServiceServiceLocator
class, locate the following line of code:

"http://localhost:8080/soap/services/EncryptionService";

and change it to this line:

"http://localhost:8080/soap/services/EncryptionService?blob=base64";

You must also add the following Axis JAR files to your Java project’s class path:

● activation.jar

● axis.jar

● commons-codec-1.3.jar

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 505

● commons-collections-3.1.jar

● commons-discovery.jar

● commons-logging.jar

● dom3-xml-apis-2.5.0.jar

● jai_imageio.jar

● jaxen-1.1-beta-9.jar

● jaxrpc.jar

● log4j.jar

● mail.jar

● saaj.jar

● wsdl4j.jar

● xalan.jar

● xbean.jar

● xercesImpl.jar

These JAR files are in the [install directory]/Adobe/LiveCycle8/sdk/lib/thirdparty directory.

Caution: Make sure that you added ?blob=base64 to the URL in the
EncryptionServiceServiceLocator class. Otherwise, you cannot retrieve binary data
from the BLOB object.

Invoking the Encryption service using a WS-Security header

To invoke the Encryption service using Axis-generated library files and passing a WS-Security header,
perform the following steps:

1. Create Java proxy classes that consume the Encryption service WSDL. (See Generating Axis library files
required to invoke the Encryption service.)

2. Include the Java proxy classes into your class path.

3. Add the WSS4J (Web Service Security for Java) library files to your class path. (See Passing client
authentication using Axis-generated Java classes.)

4. Create a deployment descriptor file (client_deploy.wsdd). (See Deployment descriptor file.)

5. Create a callback class that implements the
javax.security.auth.callback.CallbackHandler interface. (See Callback class.)

6. Create a java.io.FileInputStream object by using its constructor and passing the location of the
deployment descriptor file.

7. Create an org.apache.axis.EngineConfiguration object by using the
org.apache.axis.configuration.FileProvider constructor and passing the
java.io.FileInputStream object.

8. Create an EncryptionServiceServiceLocator object by using its constructor and passing the
org.apache.axis.EngineConfiguration object.

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 506

9. Create a EncryptionService object by invoking the EncryptionServiceServiceLocator
object’s getEncryptionService method.

10. Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document that is
encrypted with a password.

11. Create a java.io.File object by invoking its constructor and passing a string value that represents
the file location of the PDF document to encrypt.

12. Create a java.io.FileInputStream object by using its constructor and passing the
java.io.File object that references the PDF file.

13. Create a byte array that stores the content of the java.io.FileInputStream object. You can
determine the size of the byte array by invoking the java.io.FileInputStream object’s
available method.

14. Populate the byte array with stream data by invoking the java.io.FileInputStream object’s
read method and passing the byte array.

15. Populate the BLOB object by invoking its setBinaryData method and passing the populated byte
array.

16. Create a PasswordEncryptionOptionSpec object by using its constructor.

17. Specify the password value that lets a user open the encrypted PDF document by invoking the
PasswordEncryptionOptionSpec object’s setDocumentOpenPassword method and passing a
string value that represents the open password.

18. Specify the Acrobat compatibility option by invoking the PasswordEncryptionOptionSpec
object’s setCompatability method and passing a PasswordEncryptionCompatability enum
value. For example, pass PasswordEncryptionCompatability.ACRO_7 to encrypt the document
by using the Advanced Encryption Standard.

19. Specify the password value that lets a user remove encryption from the PDF document by invoking the
PasswordEncryptionOptionSpec object’s setPermissionPassword method and passing a
string value that represents the permission password.

20. Specify the PDF document resources to encrypt by invoking the PasswordEncryptionOptionSpec
object’s setEncryptOption method and passing a PasswordEncryptionOption enum value. To
encrypt the entire PDF, include its metadata and attachments, and pass the value
PasswordEncryptionOption.ALL.

21. Encrypt the PDF document by invoking the EncryptionServiceService object’s
encryptPDFUsingPassword method and passing the following values:

● The BLOB object that contains the PDF document to encrypt

● The PasswordEncryptionOptionSpec object that contains encryption run-time options

The encryptPDFUsingPassword method returns a BLOB object that contains a
password-encrypted PDF document.

22. Create a java.io.File object by invoking its constructor and passing a string value that represents
the file location of the secured PDF document.

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 507

23. Create a byte array that stores the data content of the BLOB object that was returned by the
encryptPDFUsingPassword method. Populate the byte array by invoking the BLOB object’s
getBinaryData method.

24. Create a java.io.FileOutputStream object by invoking its constructor and passing the
java.io.File object that represents the secured PDF document.

25. Write the contents of the byte array to a PDF file by invoking the java.io.FileOutputStream
object’s write method and passing the byte array.

Example: Invoking the Encryption service using Axis-generated files and a WS-Security header

The following Java code example uses Axis-generated Java files and a WS-Security header to encrypt a
PDF document with a password:

import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import org.apache.axis.EngineConfiguration;
import org.apache.axis.configuration.FileProvider;
import com.adobe.idp.services.*;

public class EncryptDoc {

public static void main(String[] args) {
try

{

//Authenticate the user using a WS-Security header
FileInputStream wsSecurity = new

FileInputStream("C:\\Adobe\\client_deploy.wsdd");
EngineConfiguration config = new FileProvider(wsSecurity);

//Create an EncryptionService object
EncryptionServiceServiceLocator sl = new

EncryptionServiceServiceLocator(config);
EncryptionService encryptionOb = sl.getEncryptionService();

//Create a BLOB object
BLOB fileBlob = new BLOB();

//Create a File object
File myFile = new File("C:\\Map.pdf");

//Create an InputStream object
FileInputStream fileInput = new FileInputStream(myFile);

//Create a byte array and populate it with stream data
int size = fileInput.available();
byte []myByte = new byte[size];
fileInput.read(myByte);

 //Populate the BLOB object
 fileBlob.setBinaryData(myByte);

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Passing client authentication using a .NET client assembly 508

 //Create a PasswordEncryptionOptionSpec
PasswordEncryptionOptionSpec passSpec = new

PasswordEncryptionOptionSpec();
passSpec.setDocumentOpenPassword("AdobeOpen");
passSpec.setCompatability(PasswordEncryptionCompatability.ACRO_7);
passSpec.setPermissionPassword("AdobeMaster");
passSpec.setEncryptOption(PasswordEncryptionOption.ALL);

//Secure a PDF with a password
BLOB noPassDoc =

encryptionOb.encryptPDFUsingPassword(fileBlob,passSpec);

//Write the encrypted PDF data stream to a local file
File outFile = new File("C:\\MapPasswordEncrypt.pdf");
byte [] securedDocument = noPassDoc.getBinaryData();

//Create a Java FileOutputStream object
FileOutputStream myOutput = new FileOutputStream(outFile) ;

//Write the byte array contents to the PDF file
myOutput.write(securedDocument);
myOutput.close();
 }

catch (Exception e) {
 e.printStackTrace();

}
}

}

Passing client authentication using a .NET client assembly
To pass client authentication information when using a .NET client assembly, you can use Web Services
Enhancements (WSE) 3.0 for Microsoft .NET. To do so, you must install WSE on your development
computer and integrate it with Microsoft Visual Studio .NET. You can download WSE from
www.microsoft.com/downloads/search.aspx.

From this web page, search for Web Services Enhancements 3.0 and download it onto your development
computer. This places a file named Microsoft WSE SPI.msi on your computer. Run the installation program
and follow the online instructions.

Creating a proxy class

Create a proxy class that is used to create the .NET client assembly by using a tool that accompanies
Microsoft Visual Studio. The name of the tool is wsdl.exe and is located in the Microsoft Visual Studio
installation folder. To create a proxy class, open the command prompt and navigate to the folder that
contains the wsdl.exe file. Enter the following command at the command prompt:

wsdl http://localhost:8080/soap/services/EncryptionService?WSDL

By default, this tool creates a CS file in the same folder that is based on the name of the WSDL. In this
situation, it creates a CS file named EncryptionServiceService.cs. You use this CS file to create a proxy object
that lets you invoke the service that was specified in the WSDL definition.

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Creating the .NET client assembly 509

Amend the WSDL definition in the proxy class to include ?blob=base64 to ensure that the BLOB object
returns binary data; that is, in the proxy class, locate the following line of code:

"http://localhost:8080/soap/services/EncryptionService";

and change it to this line:

"http://localhost:8080/soap/services/EncryptionService?blob=base64";

Note: For more information about the wsdl.exe tool, see MSDN Help.

Caution: Make sure that you added ?blob=base64 to the URL in the proxy class that is used to create
the .NET client assembly. Otherwise, you cannot retrieve binary data from the BLOB object.

Creating the .NET client assembly

Create a new Visual Studio Class Library project that produces a .NET client assembly. You can import the
CS file that you created using the wsdl.exe tool. You must also enable this project to use Web Services
Enhancements. This project will produce a DLL file that you can use in other Visual Studio .NET projects to
invoke the Encryption service.

➤ To create the .NET client assembly:

1. Start Microsoft Visual Studio .NET.

2. Create a new Class Library project and name it EncryptionService.

3. Import the CS file that you created using Webservice Studio.

4. Enable the project for WSE by right-clicking in the Solution Explorer panel and selecting WSE Settings
3.0.

5. Select Enable This Project for Web Services Enhancements, and click OK.

Tip: Instead of importing the CS file into your Class Library project, you can copy the contents of the file
and paste it into your project.

➤ To reference the WSE library:

1. In the Project menu, select Add Reference.

2. In the Add Reference dialog box, select Microsoft.Web.Services3.dll.

3. Select System.Web.Services.dll.

4. Click Select and then click OK.

➤ To compile the .NET client assembly:

1. In the EncryptionServiceService.cs file, change the class definition from the following text:

public class EncryptionService :
System.Web.Services.Protocols.SoapHttpClientProtocol

to this text:

public class EncryptionService :
Microsoft.Web.Services3.WebServicesClientProtocol

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 510

2. Compile and link the project.

Note: This procedure creates a .NET client assembly named EncryptionService.dll.

Referencing the .NET client assembly

Place your newly-created .NET client assembly on the computer where you are developing your client
application. After you place the .NET client assembly in a directory, you can reference it from a project. You
must also reference the System.Web.Services and Microsoft.Web.Services3 libraries from your
project. If you do not reference these libraries, you cannot use the .NET client assembly to invoke a service.

➤ To reference the .NET client assembly:

1. In the Project menu, select Add Reference.

2. Click the .NET tab.

3. Click Browse and locate the EncryptionService.dll file.

4. Click Select and then click OK.

Invoking the Encryption service using a WS-Security header

To encrypt a PDF document with a password by using a .NET client assembly and passing a WS-Security
header, perform the following steps:

1. Using the Microsoft .NET client assembly, create an EncryptionServiceService object by
invoking its default constructor.

2. Create a UsernameToken object that represents security credentials by using its constructor. Within
the constructor, specify the LiveCycle ES user name and the corresponding password, as well as a
PasswordOption enumeration, which specifies how the password is sent. For information about a
PasswordOption enumeration, see MSDN Help.

3. Use the EncryptionServiceService object’s RequestSoapContext property to set the
following SOAP request properties:

● SoapContext.Security.TimeStamp: The timestamp located in a SOAP message header

● SoapContext.Security.Tokens: A collection of security tokens

● SoapContext.Security.MustUnderstand: Specifies whether the SoapHeader must be
understood

4. Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document that is
encrypted with a password.

5. Create a System.IO.FileStream object by invoking its constructor and passing a string value that
represents the file location of the PDF document to encrypt and the mode in which to open the file.

6. Create a byte array that stores the content of the System.IO.FileStream object. You can determine
the size of the byte array by getting the System.IO.FileStream object’s Length property.

7. Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read
method and passing the byte array, the starting position, and the stream length to read.

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 511

8. Populate the BLOB object by assigning its binaryData property with the contents of the byte array.

9. Create a PasswordEncryptionOptionSpec object by using its constructor.

10. Specify the PDF document resources to encrypt by assigning a PasswordEncryptionOption enum
value to the PasswordEncryptionOptionSpec object’s encryptOption data member. To
encrypt the entire PDF, including its metadata and its attachments, assign
PasswordEncryptionOption.ALL to this data member.

11. Specify the Acrobat compatibility option by assigning a PasswordEncryptionCompatability
enum value to the PasswordEncryptionOptionSpec object’s compatability data member. For
example, assign PasswordEncryptionCompatability.ACRO_7 to this data member.

12. Specify the password value that lets a user open the encrypted PDF document by assigning a string
value that represents the open password to the PasswordEncryptionOptionSpec object’s
documentOpenPassword data member.

13. Specify the password value that lets a user remove encryption from the PDF document by assigning a
string value that represents the master password to the PasswordEncryptionOptionSpec object’s
permissionPassword data member.

Encrypt the PDF document by invoking the EncryptionServiceService object’s
encryptPDFUsingPassword and passing the following values:

● The BLOB object that contains the PDF document to encrypt with the password

● The PasswordEncryptionOptionSpec object that contains encryption run-time options

The encryptPDFUsingPassword method returns a BLOB object that contains a
password-encrypted PDF document.

14. Create a System.IO.FileStream object by invoking its constructor and passing a string value that
represents the file location of the secured PDF document.

15. Create a byte array that stores the data content of the BLOB object that was returned by the
encryptPDFUsingPassword method. Populate the byte array by getting the value of the BLOB
object’s binaryData data member.

16. Create a System.IO.BinaryWriter object by invoking its constructor and passing the
System.IO.FileStream object.

17. Write the contents of the byte array to a PDF file by invoking the System.IO.BinaryWriter object’s
Write method and passing the byte array.

Example: Invoking the Encryption service using a .NET client assembly and a WS-Security header

The following C# code example uses .NET client assembly and a WS-Security header to encrypt a PDF
document with a password:

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.IO ;
using Microsoft.Web.Service3;
using Microsoft.Web.Services3.Security.Tokens;

namespace PasswordEncryptPDF

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 512

{
class Class1
{

[STAThread]
static void Main(string[] args)
{

try
{

//Create an EncryptionServiceService client object
EncryptionServiceService encryptionClient = new

EncryptionServiceService();

//Specify the LiveCycle ES user name and password
String auth_uid = "administrator";
String auth_pwd = "password";

UsernameToken userToken = new UsernameToken(auth_uid,
auth_pwd,PasswordOption.SendPlainText);

encryptionClient.RequestSoapContext.Security.Timestamp.TtlInSeconds
= 60;

encryptionClient.RequestSoapContext.Security.Tokens.Add(userToken);
encryptionClient.RequestSoapContext.Security.MustUnderstand =

false;

//Create a BLOB object to store the PDF document
BLOB inDoc = new BLOB();

//Specify the PDF document to encrypt with a password
string path = "C:\\Adobe\\Loan.pdf";
FileStream fs = new FileStream(path, FileMode.Open);

//Get the length of the file stream
int len = (int)fs.Length;
byte[] ByteArray=new byte[len];

//Populate the byte array with the contents of the FileStream object
fs.Read(ByteArray, 0, len);
inDoc.binaryData = ByteArray;

//Create a PasswordEncryptionOptionSpec
//object that stores encryption run-time values
PasswordEncryptionOptionSpec passSpec = new

PasswordEncryptionOptionSpec();

//Specify the PDF document resource to encrypt
passSpec.encryptOption=PasswordEncryptionOption.ALL;

//Specify the Acrobat version
passSpec.compatability = PasswordEncryptionCompatability.ACRO_7;

//Specify the password values
passSpec.documentOpenPassword = "OpenPassword";
passSpec.permissionPassword = "PermissionPassword";

LiveCycle SDK Passing credentials using WS-Security headers
Rendering Forms Invoking the Encryption service using a WS-Security header 513

//Encrypt the PDF document with a password
BLOB outDoc =

encryptionClient.encryptPDFUsingPassword(inDoc,passSpec);

//Populate a byte array with a BLOB data
byte[] outByteArray=outDoc.binaryData;

//Create a new file that represents the encrypted PDF document
string FILE_NAME = "C:\\Adobe\\EncryptLoan.pdf" ;
FileStream fs2 = new FileStream(FILE_NAME, FileMode.OpenOrCreate);

//Create a BinaryWriter object
BinaryWriter w = new BinaryWriter(fs2);
w.Write(outByteArray);
w.Close();
fs2.Close();

}
catch (Exception ee)
{

Console.WriteLine(ee.Message);
}

}
}

}

