WARNING - this is a draft document!

Introduction to the Coral

The Coral is a collection of building blocks for developing web applications. Designed to
be modular from the start, each module forms a distinct layer based on its primary role.
Although layers are intended to support each other, they may be used independently if one
desire to do so. This makes it possible to implement Coral’s user experience in any HTML-
capable environment.

The Coral doesn’t mandate use of any particular development model and/or platform. Its
primary goal is to provide unified and clean HTML5 markup, regardless of an actual
method used to emit this markup. This may be client or server-side rendering, templates,
JSP, PHP or even Adobe Flash RIA applications - just to name few.

HTML Elements
(look & feel)

Element plugins
(behavior)

Widgets
(higher level Ul building blocks)

Utility library
(glue/plumbing)

WARNING - this is a draft document!

HTML Elements - the markup layer:

It's purpose is to provide common look and feel for all common Ul elements such as
navbar, button, menu or rail.

An element is just a HTML tag with dedicated class name. More complex elements may be
composed of multiple tags, nested within each other in specific way. The CSS is used to
provide the actual look and feel. In order to make it possible to customize the L&F easily
(e.g. in case of branding), actual style values are declared as variables which will be
expanded by the LESS pre-processor during the runtime.

purpose:
. basic Ul elements with common look and feel
- default grid system

implementation:

« HTML tags with bootstrap-inspired styles
- classes are defined in LESS files

- icons as font sprites

example:

markup:
btn btn-large btn-primary
btn btn-large

shows as:

g

the look and feel is defined in a LESS, tied to an element by dedicated class name:

baseFontSize
baseLineHeight
btnBackground
btnBackgroundHighlight
grayDark

with actual values defined in LESS variable file:

btnBackgroundHighlight

btnPrimaryBackgroundHighlight btnPrimaryBackground
baseFontSize

baseFontFamily sansFontFamily

WARNING - this is a draft document!
Element plugins:

Many of the HTML Elements should exhibit some kind of dynamic behavior such us popup
menu opening and closing, which is not possible to accomplish without resulting to
manipulate the DOM via JavaScript. This is the role of Element Plugins. A plugin either
works on specific DOM element, e.g. dialog plugin expects to find DIV class=dialog or is
generic in nature, e.g. a layout manger would provide layout for any list of DIV or LI
elements.

Some plugins require parameters to customize their behavior. This is accomplished in two
ways; by passing parameters programmatically via JS call or by using dedicated data-*
attributes tied to the HTML markup. Its up to a developer to choose the best approach for
a given plugin. The rule of thumb is to use data-* attributes for options related to HTML
layout (e.g. specify number of columns) and API options/class for functionality related to
data (e.qg. list of items to display).

The same concept is used to implement form validation. An element that need to be
validated would specify its desired input format as custom data-* attribute. This data
attribute will then be used as an option for a validation plugin.

NOTE: HTML5-native form validation should be used whenever possible and/or expanded
upon.

purpose:

« provide dynamic behavior for HTML Elements
« custom layouts not possible with pure CSS

- form validation

- advanced DOM manipulation

implementation:

« jQuery plugin tied to specific DOM element(s)

- using data-* attributes to customize its behavior
example:

markup (note the options specified as data-* attributes):

data-column-width data-layout

WARNING - this is a draft document!

</1li>

call jQuery plugin:

$S(’.cards’).cardlayout ();

shows as:
(aomarinn - (mmmaryian - -t -
A . . |
Toolbar =
¥
toolbar I I -

I —— - I

The cardLayout plugin will laid out the enclosed UL elements based on their
respective heights, taking parent’s width into consideration.

WARNING - this is a draft document!
HTML Element widgets:

A widget combines one or more basic level elements with a JS plugin to form 'higher level'
Ul elements to implement more complex behavior and/or look & feel then a single could
provide. Good example could be a tag picker or rail widget. A widget can both trigger and
listen to custom events, thus cooperating with other widgets on a page. Some widgets may
actually be a native jQuery widgets using the Coral HTML elements.

purpose:
« implement higher level Ul elements exhibiting complex behavior
- triggering and handling events

implementation:
« jQuery plugin + HTML markup
- may utilize client/server side templates

example:

markup:

<input type="text" name="tags" placeholder="Tags" class="tagManager"/>
call jQuery plugin with options:

S(".tagManager") .tagsManager ({
prefilled: ["Pisa", "Rome"] })

plugin emits HTML markup (this markup uses basic elements, which intern may use other
plugins):

Pisa
<a title="Removing tag" tagidtoremove="0"
id="myRemover 0" class="myTagRemover" href="#">x

Rome
<a title="Removing tag" tagidtoremove="1"
id="myRemover 1" class="myTagRemover" href="#">x

<input type="text" data-original-title= class="input-medium tagManager"
placeholder="Tags" name="tags" data-provide="typeahead" data-items="6"
autocomplete="off">

shows as:

Pisa Rome Fl

WARNING - this is a draft document!
Utility library:

Collection of JS helper plugins or functions that are Ul independent, yet crucial for building
full featured web applications, such as XSS handling or event bus. Although the HTML
element plugins and widgets may rely on functionality provided by the utility library, the
utility library may not have any hard dependency on the elements nor widgets itself.

purpose:

« provide common functionality
« event bus implementation

- client-side templates

« XSS

implementation:
+ jQuery plugins or AMD-compliant JavaScript modules

NEEDS some examples here??

