

 Experience League

 Sign In

 Learn

 Courses
 Recommended courses
 Tutorials
 Certification
 Events
 Instructor-led training
 Browse content library
 View all learning options

 Documentation

 Community

 Quick links

 Experience Cloud Advocates

 Meet our community of customer advocates

 Events

 Attend local and virtual events

 Employee Advisors

 Connect with one of our experts

 Experience League Showcase

 Read real-world use cases of Experience Cloud products written by your peers

 Communities by product

 Community home
 Advertising
 Analytics
 Audience Manager
 Campaign Classic v7 & Campaign v8
 Campaign Standard
 Developer
 Experience Cloud
 Experience Manager Sites & More
 Experience Platform
 Journey Optimizer
 Target
 Real-Time Customer Data Platform
 Workfront
 Creative Cloud

 Document Cloud

 Commerce

 Marketo Engage

 Support

 Sign In

 All

 	

 All

	

 Certification

	

 Community

	

 Courses

	

 Documentation

	

 Events

	

 Troubleshooting

	

 Tutorials

 Deutsch
 English
 Español
 Français
 Italiano
 Nederlands
 Português
 Svenska
 中文 (简体)
 中文 (繁體)
 日本語
 한국어

 Adobe Experience Cloud
 Adobe Document Cloud

 Profile
 Profile

 Achievements

 View your awards after completing your profile.

 Bookmarks

 View your bookmarks after completing your profile.

 Sign out

 Learn

 Courses

 Recommended courses

 Tutorials

 Certification

 Events

 Instructor-led training

 Browse content library

 View all learning options

 Search Results

 Documentation

 Community

 Communities by product

 Community home

 Advertising

 Analytics

 Audience Manager

 Campaign Classic v7 & Campaign v8

 Campaign Standard

 Developer

 Experience Cloud

 Experience Manager Sites & More

 Experience Platform

 Journey Optimizer

 Target

 Real-Time Customer Data Platform

 Workfront

 Creative Cloud

 Document Cloud

 Commerce

 Marketo Engage

 Quick links

 Experience Cloud Advocates

 Events

 Employee Advisors

 Experience League Showcase

 Support

 Home

 Opening a case requires entitlement.

 Open Ticket

 Opening a case requires entitlement.

 My Cases

 Request a session

 Profile
 Profile

 Achievements

 View your awards after completing your profile.

 Bookmarks

 View your bookmarks after completing your profile.

 Adobe Experience Cloud
 Adobe Document Cloud
 Search

 Sign Out

 Change language

 Deutsch

 English

 Español

 Français

 Italiano

 Nederlands

 Português

 Svenska

 中文 (简体)

 中文 (繁體)

 日本語

 한국어

 Table of contents

 	

 	AEM 6.4 Forms Guide
	Release Notes
	Release Notes
	New features summary
	Deprecated features

	Getting Started
	Introduction to AEM Forms
	Introduction to authoring adaptive forms
	Introduction to Interactive Communications
	Introduction to managing forms
	Tutorial: Create your First Adaptive Form
	Tutorial: Create your first adaptive form
	Tutorial: Create an adaptive form
	Tutorial: Create form data model
	Tutorial: Apply rules to adaptive form fields l
	Tutorial: Style your adpative form

	Tutorial: Create your First Interactive Communication
	Tutorial: Create your first Interactive Communication
	Tutorial: Plan the Interactive Communication
	Tutorial: Create form data model
	Tutorial: Create document fragments
	Tutorial: Create templates
	Tutorial: Create Interactive Communication

	AEM Forms Reference Collaterals
	Set up and configure AEM Forms reference sites
	We.Finance reference site walkthrough
	We.Gov reference site walkthrough
	Employee self-service reference site walkthrough
	Employee recruitment reference site walkthrough
	We.Finance Auto Insurance Renewal reference site
	We.Gov reference site FOIA walkthrough
	Reference adaptive form fragments
	Reference Themes
	Reference letter templates
	Configure Microsoft Dynamics 365 for the home mortgage workflow of the We.Finance reference site

	Install and configure AEM Forms
	Architecture and deployment topologies for AEM Forms
	Choosing a persistence type for an AEM Forms installation
	Install AEM Forms on OSGi
	Supported platforms for AEM forms on OSGi
	Install and configure document services
	Install and configure data capture capabilities
	Install and Configure Forms-centric workflow on OSGi
	Install and configure Interactive Communications

	Install AEM Forms on JEE
	Supported platforms for AEM forms on JEE
	Installing and Deploying AEM Forms on JEE Using JBoss Turnkey
	Installing and configuring AEM Forms Document Security server
	Preparing to install AEM Forms (Single Server)
	Installing and Deploying Adobe Experience Manager Forms on JEE for JBoss
	Installing and Deploying AEM Forms on JEE for WebLogic
	Installing and Deploying Adobe Experience Manager Forms on JEE for WebSphere
	Install AEM Forms Workbench
	Install and configure Designer
	Preparing to Install AEM Forms (Server Cluster)
	Configuring Adobe Experience Manager Forms on JEE on JBoss Cluster
	Configuring Adobe Experience Manager Forms on JEE on WebLogic Cluster
	Configuring Adobe Experience Manager Forms on JEE on WebSphere Cluster

	Configure AEM Forms
	Performance tuning of AEM Forms server
	Configure adaptive forms cache
	Configuring AEM DS settings
	Configuring the synchronization scheduler
	Configuring the Connector for Microsoft SharePoint
	Connecting AEM Forms with Adobe LiveCycle
	Configuring AEM Forms to submit form data to an AEM Forms on JEE process
	AEM desktop app for AEM Forms

	Upgrade AEM Forms
	Available upgrade paths
	Upgrade AEM Forms on OSGi
	Upgrade to AEM 6.4 forms on OSGi
	Install Compatibility Package
	Migrate AEM Forms assets and documents

	Upgrade AEM Forms on JEE
	Preparing to upgrade AEM Forms
	Adobe Experience Manager Forms on JEE upgrade checklist and planning
	Upgrade to AEM 6.4 forms on JEE
	Upgrading to Adobe Experience Manager Forms on JEE for JBoss
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for JBoss
	Upgrading to AEM Forms on JEE for JBoss Turnkey
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for JBoss Turnkey
	Upgrading to Adobe Experience Manager Forms on JEE for WebLogic
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for WebLogic
	Upgrading to Adobe Experience Manager Forms on JEE for WebSphere
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for WebSphere

	Manage AEM Forms
	AEM Forms on OSGi Groups and Privileges
	Create new folders to categorize forms
	Searching for forms and assets
	Manage form metadata
	Download an XFA or a PDF form template
	Deleting forms and related resources
	Getting XDP and PDF documents in AEM Forms
	Importing and exporting assets to AEM Forms
	Supporting new locales for adaptive forms localization
	Handling user data
	Forms-centric workflows on OSGi
	Forms user management
	Forms JEE workflows
	Forms Portal
	Correspondence Management
	Integration with Acrobat Sign
	Document Security

	Hardening AEM Forms Environment
	Hardening and Securing AEM forms on OSGi environment
	General Security Considerations for AEM Forms on JEE
	Hardening Your AEM Forms on JEE Environment
	Configuring Secure Administration Settings for AEM Forms on JEE

	Form Data Model
	Introduction to AEM Forms Data Integration
	Configure data sources
	Microsoft Dynamics Odata configuration
	Create form data model
	Work with form data model
	Use form data model

	Adaptive Forms - Basic Authoring
	Best practices for working with adaptive forms
	Creating an adaptive form
	Adaptive form fragments
	Configuring the Submit action
	Using CAPTCHA in adaptive forms
	Adaptive forms keywords
	Tables in adaptive forms
	Auto-save an adaptive form
	Configuring redirect page
	Creating accessible adaptive forms
	Creating forms with repeatable sections
	Embed an adaptive form or interactive communication in AEM sites page
	Embed adaptive form in external web page
	Inline styling of adaptive form components
	Introduction to multi-step form sequence
	Layout capabilities of adaptive forms
	Placeholder text in AEM Forms
	Previewing a form
	Reusing adaptive forms
	Separator component in adaptive forms
	Apply electronic signatures to a form using scribble signatures
	AEM Forms Keyboard Shortcuts
	Associating submission reviewers with a form
	Authoring in-context help for form fields

	Adaptive Forms - Advanced Authoring
	Creating adaptive forms using JSON Schema
	Creating adaptive forms using XML Schema
	Using Acrobat Sign in an adaptive form
	Creating and using themes
	Adaptive forms rule editor
	API to invoke form data model service from adaptive forms
	Asynchronous submission of adaptive forms
	Create an adaptive form using a set of adaptive forms
	Adaptive Form Templates
	Adaptive Form Expressions
	Generate Document of Record for adaptive forms
	Improve performance of large forms with lazy loading
	Prefill adaptive form fields
	Using SOM expressions in adaptive forms
	Adding information from user data to form submission metadata
	XFA support in XDP-based adaptive forms
	Changing Page Zero content in Designer
	Grant rule editor access to select user groups
	Using AEM translation workflow to localize adaptive forms and document of record
	Automate testing of adaptive forms
	Styling constructs for adaptive forms
	Synchronizing Adaptive Forms with XFA Form Templates
	Integrate Acrobat Sign with AEM Forms
	Creating and managing reviews for assets in forms
	Standard validation error messages for adaptive forms

	Interactive Communications
	Introduction to Interactive Communication authoring UI
	Create an Interactive Communication
	Using charts in Interactive Communications
	Texts in Interactive Communications
	Conditions in Interactive Communications
	Prepare and send Interactive Communication using the Agent UI
	Print channel and web channel
	Interactive Communications configuration properties

	Workflows
	Forms-centric workflow on OSGi
	Forms-centric workflow on OSGi - Step Reference
	Dynamically select a user or group for AEM Forms-centric workflow steps
	Actions and capabilities of Form-centric AEM Workflows on OSGi and AEM Forms JEE workflows
	Initiate Document Services APIs from AEM Workflow

	AEM Forms Workspace
	Introduction to AEM Forms workspace
	Working with AEM Forms workspace
	AEM Forms Workspace Architecture
	Features of AEM Forms workspace not available in Flex workspace
	Features of Flex workspace not available in AEM Forms workspace
	Backbone interaction
	Description of reusable components
	Document details for renderer
	Integrating AEM Forms workspace components in web applications
	New render and submit service
	Understanding the folder structure
	Integrating third-party applications in AEM Forms workspace
	AEM Forms workspace JSON object description
	Introduction to Customizing AEM form workspace
	Generic steps for AEM Forms workspace customization
	Changing the locale of AEM Forms workspace user interface
	Creating a new login screen
	Customizing error dialogs
	Customizing tabs for a task
	Customizing the task details page
	Customizing the listing of process instances
	Customizing Task Actions
	Displaying additional data in ToDo list
	Getting Task Variables in Summary URL
	Customize images used in route actions
	Minification of the JavaScript files
	Customize tracking tables
	Updating the link to the documentation
	Working with Formsets in AEM Forms workspace
	APIs used in AEM Forms workspace
	Initiating a new process with existing process data in AEM Forms workspace
	Hosting two AEM Forms workspace instances on one server
	Changing the color scheme of the interface
	Changing the font on the interface
	Changing the organization logo for branding
	Displaying information in the Task Summary pane
	Displaying the user avatar
	Getting started with AEM Forms workspace
	Managing tasks in an organizational hierarchy using Manager View
	Starting processes
	Tracking processes
	Single Sign On and timeout handlers
	Using an adaptive form in HTML Workspace
	Integrating AEM forms workspace with Microsoft Office SharePoint Server
	Working with To-do lists
	Troubleshooting guidelines for AEM Forms workspace

	AEM Forms app
	Introduction to AEM Forms app
	Set up environment for AEM Forms app
	Set up the Xcode project and build the iOS app
	Building a secure AEM Forms app for iOS
	Set up the Visual Studio project and build the Windows app
	Set up the Android studio project and build the Android app
	Build the AEM Forms Android app
	Distribute AEM Forms app
	Gesture customization
	Branding Customization
	Theme Customization
	Logging in to AEM Forms app
	Home screen
	Synchronizing the app
	Working with a Form
	Working with Startpoints
	Opening a task
	Saving a task or form as a draft
	Using autosave in AEM Forms app
	Save forms as templates
	Adding attachments
	Working in the offline mode
	Updating general settings
	Troubleshoot AEM Forms app

	HTML5 Forms
	Introduction to HTML5 forms
	Getting started with HTML5 forms
	Architecture of HTML5 forms
	Feature differentiation between HTML5 forms and PDF forms
	Frequently asked questions (FAQ) for HTML5 forms
	Designing form templates for HTML5 forms
	Best practices for HTML5 forms
	Designing accessible HTML5 forms
	Generate HTML5 preview of an XDP form
	Rendering form template for HTML5 forms
	Enabling attachments for an HTML5 form
	HTML5 forms service proxy
	Optimizing HTML5 forms
	Screen readers for HTML5 forms
	Creating a custom profile for HTML5 forms
	Right-to-left languages in HTML5 forms
	Integrating Form Bridge with custom portal for HTML5 forms
	Create custom appearances in HTML5 forms
	Changing default styles of HTML5 forms
	Picture clause support for HTML5 forms
	Create accessible complex tables in HTML5 forms
	Creating CSS styles for HTML5 forms
	Customizing error messages for HTML5 forms
	Saving an HTML5 form as a draft
	Enable logging for HTML5 forms
	Debugging HTML5 forms
	Scripting support for HTML5 forms
	Form set in AEM Forms

	Letters and Correspondences
	Correspondence Management Overview
	Layout Design
	Data Dictionary
	Document Fragments
	Create Letter
	Create Correspondence
	Remote functions in Expression Builder
	Manage agent signature images
	Post processing of letters and interactive communications
	Add custom action to the Asset Listing view
	Add custom action/button in Create Correspondence UI
	Add custom properties to Correspondence Management assets
	Customize create correspondence UI
	Customize text editor
	Correspondence Management: Troubleshooting
	APIs to access letter instances
	Integrating Create Correspondence UI with your custom portal
	Custom special characters in Correspondence Management
	Custom watermark in letter PDF preview
	Configuring a Correspondence Management solution
	Inline condition and repeat in Interactive Communications and letters
	Document Fragments
	Correspondence Management Configuration Properties

	Integrate AEM Forms with Experience Cloud solutions
	Create targeted experiences in AEM Forms
	Measure and improve effectiveness and conversion of forms
	Configuring analytics and reports
	View and understand AEM Forms analytics reports
	Create and manage A/B test for adaptive forms

	Publish and process AEM Forms
	Introduction to publishing forms on a portal
	Sample for integrating drafts & submissions component with database
	Configuring storage services for drafts and submissions
	Manage Forms applications and tasks in AEM Inbox
	Watched folder in AEM Forms
	Drafts and submissions component
	Embedding link component in a page
	Publishing and unpublishing forms and documents
	Listing forms on a web page using APIs
	Accessing and filling published forms
	Sending a form submission acknowledgement via email
	Create or Configure a watched folder
	Use custom email templates in an Assign Task step
	Use metadata in an email notification

	Forms Portal
	Customizing templates for forms portal components
	Enabling forms portal components
	Creating a forms portal page
	APIs to work with submitted forms on forms portal
	Custom storage for drafts and submissions component

	Document Services
	Overview of AEM Document Services
	Forms Service
	Output Service
	ConvertPDF Service
	Barcoded Forms Service
	Using Assembler Service
	Use HSM to digitally sign or certify documents
	Using AEM Document Services Programmatically
	Using the sendToPrinter API

	Document Security
	Document security offerings
	Enable AEM to search document security protected PDF documents
	Reader extending policy-protected PDF documents using Portable Protection Library
	Enable AEM to search document security protected PDF and Microsoft Office documents
	Protect a document on behalf of another user

	Forms Designer
	Using Designer
	Designer Quick Start Tutorials
	Designer Samples
	Designer Scripting Basics
	Designer Scripting Reference
	Designer FormCalc Reference
	Using Scribble Signature in HTML5 forms

	Customize AEM Forms
	Appearance framework for adaptive and HTML5 forms
	Creating a custom adaptive form template
	Creating custom layout components for adaptive forms
	Adding custom action on form lister items
	Customize layout and positioning of error messages of an adaptive form
	Creating a custom toolbar action
	Customizing form event tracking
	Create custom appearances for adaptive form fields
	Customizing Draft and Submission data services
	Dynamically populating drop-down lists
	Writing custom Submit action for adaptive forms
	Creating custom toolbar layout
	Displaying components based on the template used
	Creating custom adaptive form themes

	Transaction Reports
	Transaction Reports Overview
	Viewing and Understanding Transaction Reports
	Transaction Reports Billable APIs
	Record a transaction for custom implementations

	Administrator help for AEM Forms on JEE
	Get Started
	General AEM Forms settings
	Update the license type for the deployment

	Setting up and managing domains
	Adding domains
	Delete a domain
	Configure account-locking settings
	Editing and converting existing domains
	Configuring authentication providers
	Synchronizing directories
	Configuring directories

	Configuring User Management
	Change the order of evaluation for authentication
	Configure the LDAP bind password
	Configure AEM forms to prefetch domain information
	Configuring certificate-based authentication
	Configure SAML service provider settings
	Enabling single sign-on in AEM forms
	Configure User Management for an SSL-enabled LDAP server
	Importing and exporting the configuration file
	Configure advanced system attributes
	Preventing CSRF attacks

	Setting up and organizing users
	Adding and configuring users
	Just-in-time user provisioning
	Creating and configuring groups
	Search for a user or group
	Creating and configuring roles

	Connecting to a content management system
	Configuring Connector for EMC Documentum
	Configuring Connector for IBM FileNet
	Configuring Connector for IBM Content Manager
	Configuring Connector for Microsoft SharePoint

	Managing certificates and credentials
	Adding and removing user name and password credentials
	Managing certificate revocationlists
	Basics of managing certificates and credentials
	Managing certificates
	Managing HSM credentials
	Managing local credentials

	Importing and managing applications and archives
	Change the number of items displayed on the Applications and Services pages
	Import and manage archives
	Import and manage applications

	Managing Services
	Configure service settings
	Starting and stopping services

	Managing Endpoints
	Adding, enabling, modifying, or removing endpoints
	Configuring email endpoints
	Configuring Remoting endpoints
	Configuring watched folder endpoints
	Configuring Task Manager endpoints
	Types of endpoints

	Configuring Acrobat Reader DC extensions
	Certificate types used by Acrobat Reader DC extensions
	Recognizing valid and expired certificates in PDF documents
	Configuring Acrobat Reader DC extensions for data capture
	Review credential use information
	Configuring credentials for use with Acrobat Reader DC extensions
	Review the usage rights of a PDF file
	Enabling online commenting for Adobe Reader web browser plug-in
	Setting timeout values for use with Acrobat Reader DC extensions

	Working with PDF Generator
	Introduction to working with PDF Generator
	Enabling multi-threaded file conversions
	Configuring Adobe PDF settings
	Configuring security settings
	Configuring file type settings
	Importing and exporting PDF Generator configuration files
	Enable PDF/A support
	Setting up a PDFG Network Printer (Windows only)
	Configuring fallback fonts
	Modifying the PDF Export conversion settings
	Converting files using PDF Generator

	Configuring SSL
	Overview of configuring SSL
	Configuring SSL for JBoss Application Server
	Configuring SSL on Windows Vista
	Configuring SSL for WebLogic Server
	Configuring SSL for WebSphere Application Server

	Working with document security
	About document security
	High-volume secure information delivery
	Configuring client and server options
	Managing invited and local user accounts
	Controlling access to policy-protected documents
	Monitoring events
	Creating and managing policies
	Using the document security webpages
	Creating and managing policy sets
	Registering as a User

	Configuring Forms
	Basics of configuring forms
	Setting internationalization options
	Configuring caching for Forms
	Specifying XCI configuration options
	Configuring form output
	Specifying fonts to embed
	Configuring locations for Forms
	Specifying security settings
	Configuring validation messages

	Configuring Output
	Overview of output service
	Change the character set
	Specify XCI configuration options
	Configuring caching for Output
	Specify file locations for Output
	Make fonts available
	Specify fonts to embed
	Specify security settings

	Configuring forms workflow
	About administration and process terminology
	Managing Processes
	Configuring Business Calendars
	Overview of Forms workflow
	Configuring Out of Office Settings
	Searching for process instances
	Configuring Server Settings
	Working with stalled operations and branches
	Configuring Shared Queues
	Working with tasks

	Configuring Workspace
	Overview of Workspace
	Importing and exporting global settings
	Setting the message of the day
	Customizing search templates
	Managing the categories displayed in Workspace

	Health Monitor
	Overview of Health Monitor
	Fine-tuning Health Monitor performance
	View statistics related to Work Manager
	View system information
	Purge records from the Job Manager database

	Maintaining AEM forms
	Log files
	User Management
	Monitoring AEM forms deployments
	Work Manager and throttling
	Running AEM forms in maintenance mode

	Maintaining the AEM forms Database
	DB2 database: Running a process weekly
	Oracle database maximum open cursors threshold
	IBM DB2 database: Running commands for regular maintenance
	Purging process data
	Microsoft SQL Server database: Fine-tuning the configuration
	Tips for minimizing database growth

	Maintaining the Application Server
	Application server websites
	Global document storage directory
	Considerations when running AdministrationConsole
	Starting and stopping WebLogic Server
	Enhancing application server performance
	Starting and stopping WebSphere Application Server

	AEM forms Backup and Recovery
	Backing up and recovering the EMC Documentum repository
	Enabling and disabling safe backup mode
	Backing up the AEM forms data
	Files to back up and recover
	Backup and recovery strategy for AEM forms
	PDF Generator backup limitations
	Backup strategies for watched folders
	Recovering the AEM forms data
	Backup strategy for Connector for EMC Documentum users
	Strategy for backup and restore in a clustered environment

	System information service
	Set up the System information service
	System information Service APIs

	Process Reporting
	Introduction to Process Reporting
	Getting Started with Process Reporting
	How Process Reporting Works
	Pre-defined reports in Process Reporting
	Custom Reports in Process Reporting
	Ad-hoc Queries in Process Reporting
	Troubleshooting Process Reporting

	Developer Reference
	Developer basics
	HTML Template Language
	AEM plug-in to debug adaptive forms
	AEM Forms Java API Reference
	AEM Forms on JEE Java API Reference
	Form Bridge APIs for HTML5 forms
	JavaScript Library API reference for Adaptive Forms
	Assembler Service and DDX Reference
	Workbench Help
	Programming with AEM Forms on JEE
	Introduction to programming with AEM Forms on JEE
	Introducing Java API QuickStart
	Invoking AEM Forms using APIs
	Understanding AEM Forms Processes
	Service container

	Java API Quick Start – Code Examples
	Application Manager Client JavaAPI Quick Start(SOAP)
	Application Manager Service JavaAPI Quick Start(SOAP)
	Assembler Service Java API QuickStart(SOAP)
	Acrobat Reader DC extensions ServiceJava API Quick Start(SOAP)
	Backup and Restore Service APIQuick Starts
	Barcoded Forms Service Java APIQuick Start(SOAP)
	Components and Services Java APIQuick Start(SOAP)
	Convert PDF Service Java API QuickStart(SOAP)
	Credential Service Java API QuickStart(SOAP)
	Distiller Service Java API QuickStart(SOAP)
	DocConverter Service Java API QuickStart(SOAP)
	Document Management Service (Deprecated)Java API Quick Start(SOAP)
	Document Security Service JavaAPI Quick Start(SOAP)
	Encryption Service Java API QuickStart(SOAP)
	Endpoint Registry Java API QuickStart(SOAP)
	Form Data Integration Service JavaAPI Quick Start(SOAP)
	Forms Service API Quick Starts
	Generate PDF Service Java API QuickStart(SOAP)
	Invocation API Quick Starts
	LiveCycleProcess Java API(SOAP)Quick Start
	Output Service Java API Quick Start(SOAP)
	PDF Utilities Service Java APIQuick Start(SOAP)
	Repository Service API Quick Starts
	Signature Service Java API QuickStart(SOAP)
	Task Manager Service Java API QuickStart(SOAP)
	User Manager Java API Quick Start(SOAP)
	XMP Utilities Service Java APIQuick Start(SOAP)

	Invoking AEM Forms on JEE using APIs
	Invoking AEM Forms using REST Requests
	Invoking AEM Forms using Remoting
	Invoking AEM Forms using Web Services
	Invoking AEM Forms using Web Services
	Invoking AEM Forms using the JavaAPI
	Creating Flash Builder applicationsthat perform SSO authentication using HTTP tokens

	Performing Service Operations using APIs
	Performing Service Operations Using APIs
	Rendering Forms
	Assembling PDF Documents
	Programmatically Assembling PDF Documents
	Converting Between File Formatsand PDF
	Programmatically Disassembling PDF Documents
	Assembling Encrypted PDF Documents
	Assembling Multiple XDP Fragments
	Assembling Documents Using Bates Numbering
	Assembling Non-Interactive PDF Documents
	Assembling PDF Documents with Bookmarks
	Assigning Usage Rights
	Assembling PDF Portfolios
	Calculating Form Data
	Creating Web Applications thatRenders Forms
	Creating PDF Documents with SubmittedXML Data
	Disassemble a PDF document using the web service API
	Determining Whether Documents Are PDF/A-Compliant
	Dynamically Creating DDX Documents
	Handling Submitted Forms
	Optimizing the Performance of theForms Service
	Passing Documents to the FormsService
	Prepopulating Forms with Flowable Layouts
	Rendering Forms Based on Fragments
	Rendering Forms By Value
	Rendering Forms as HTML
	Rendering Forms at the Client
	Rendering HTML Forms Using Custom CSS Files
	Rendering HTML Forms with CustomToolbars
	Rendering Interactive PDF Forms
	Rendering Rights-Enabled Forms
	Validating DDX Documents
	Converting PDF to Postscript andImage Files
	Converting Postscript to PDF Documents
	Creating Document Output Streams
	Digitally Signing and Certifying Documents
	Encrypting and Decrypting PDF Documents
	Importing and Exporting Data
	Managing Users
	Working with AEM Forms Repository
	Working with barcoded forms
	Working with Credentials
	Working with PDF/A Documents
	Working with PDF Utilities
	Working with XMP Utilities
	Preparing AEM Forms for Backup
	Programmatically Managing Endpoints
	Programmatically managing the Preferences Nodes
	Protecting Documents with Policies
	Validate a DDX document using theweb service API

 	Related Topics
 	

 	Related Content
 	

 Documentation

AEM 6.4

Forms Guide

Protecting Documents with Policies

 Protecting Documents with Policies

 Last update: 2023-05-03

 	Topics:

 	Created for:
	
 Developer

CAUTION

AEM 6.4 has reached the end of extended support and this documentation is no longer updated. For further details, see our technical support periods. Find the supported versions here.

About the Document Security Service

The Document Security service enables users to dynamically apply confidentiality settings to Adobe PDF documents and to maintain control over the documents, no matter how widely they are distributed.

The Document Security service prevents information from spreading beyond the user’s reach by enabling the users to maintain control over how recipients use the policy-protected PDF document. A user can specify who can open a document, limit how they can use it, and monitor the document after it is distributed. A user can also dynamically control access to a policy-protected document and can even dynamically revoke access to the document.

The Document Security service also protects other file types such as Microsoft Word files (DOC files). You can use the Document Security Client API to work with these file types. The following versions are supported:

	Microsoft Office 2003 files (DOC, XLS, PPT files)
	Microsoft Office 2007 files (DOCX, XLSX, PPTX files)
	PTC Pro/E files

For clarity, the following two sections discuss how to work with Word documents:

	Applying Policies to Word Documents
	Removing Policies from Word Documents

You can accomplish these tasks using the Document Security service:

	Create policies. For information, see Creating Policies.
	Modify policies. For information, see Modifying Policies.
	Delete policies. For information, see Deleting Policies.
	Apply policies to PDF documents. For information, see Applying Policies to PDF Documents.
	Remove policies from PDF documents. For information, see Removing Policies from PDF Documents.
	Inspect policy-protected documents. For information, see Inspecting Policy Protected PDF Documents.
	Revoke access to PDF documents. For information, see Revoking Access to Documents.
	Reinstate access to revoked documents. For information, see Reinstating Access to Revoked Documents.
	Create watermarks. For information, see Creating Watermarks.
	Search for events. For information, see Searching for Events.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Creating Policies

You can programmatically create policies using the Document Security Java API or web service API. A policy is a collection of information that includes document security settings, authorized users, and usage rights. You can create and save any number of policies, using security settings appropriate for different situations and users.

Policies enable you to perform these tasks:

	Specify the individuals who can open the document. Recipients can either belong to or be external to your organization.
	Specify how recipients can use the document. You can restrict access to different Acrobat and Adobe Reader features. These features include the ability to print and copy text, add signatures, and add comments to a document.
	Change the access and security settings at any time, even after you distribute the policy-protected document.
	Monitor the use of the document after you distribute it. You can see how the document is being used and who is using it. For example, you can find out when someone has opened the document.

Creating a policy using web services

When creating a policy using the web service API, reference an existing Portable Document Rights Language (PDRL) XML file that describes the policy. Policy permissions and the principal are defined in the PDRL document. The following XML document is an example of a PDRL document.

 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
 <Policy PolicyInstanceVersion="1" PolicyID="5DA3F847-DE76-F9CC-63EA-49A8D59154DE" PolicyCreationTime="2004-08-30T00:02:28.294+00:00" PolicyType="1" PolicySchemaVersion="1.0" PolicyName="SDK Test Policy -4344050357301573237" PolicyDescription="An SDK Test policy" xmlns="https://www.adobe.com/schema/1.0/pdrl">
  <PolicyEntry>
  <ns1:Permission PermissionName="com.adobe.aps.onlineOpen" Access="ALLOW" xmlns:ns1="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns2:Permission PermissionName="com.adobe.aps.offlineOpen" Access="ALLOW" xmlns:ns2="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns3:Permission PermissionName="com.adobe.aps.pdf.editNotes" Access="ALLOW" xmlns:ns3="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns4:Permission PermissionName="com.adobe.aps.pdf.fillAndSign" Access="ALLOW" xmlns:ns4="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />
  <Principal PrincipalNameType="SYSTEM">
  <PrincipalDomain>EDC_SPECIAL</PrincipalDomain>

  <PrincipalName>all_internal_users</PrincipalName>
  </Principal>
  </PolicyEntry>
  <PolicyEntry>
  <ns5:Permission PermissionName="com.adobe.aps.onlineOpen" Access="ALLOW" xmlns:ns5="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns6:Permission PermissionName="com.adobe.aps.offlineOpen" Access="ALLOW" xmlns:ns6="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns7:Permission PermissionName="com.adobe.aps.pdf.copy" Access="ALLOW" xmlns:ns7="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns8:Permission PermissionName="com.adobe.aps.pdf.printLow" Access="ALLOW" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" xmlns:ns8="https://www.adobe.com/schema/1.0/pdrl" />

  <ns9:Permission PermissionName="com.adobe.aps.policySwitch" Access="ALLOW" xmlns:ns9="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns10:Permission PermissionName="com.adobe.aps.revoke" Access="ALLOW" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" xmlns:ns10="https://www.adobe.com/schema/1.0/pdrl" />

  <ns11:Permission PermissionName="com.adobe.aps.pdf.edit" Access="ALLOW" xmlns:ns11="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns12:Permission PermissionName="com.adobe.aps.pdf.editNotes" Access="ALLOW" xmlns:ns12="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns13:Permission PermissionName="com.adobe.aps.pdf.fillAndSign" Access="ALLOW" xmlns:ns13="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <ns14:Permission PermissionName="com.adobe.aps.pdf.printHigh" Access="ALLOW" xmlns:ns14="https://www.adobe.com/schema/1.0/pdrl" xmlns="https://www.adobe.com/schema/1.0/pdrl-ex" />

  <Principal PrincipalNameType="SYSTEM">
  <PrincipalDomain>EDC_SPECIAL</PrincipalDomain>

  <PrincipalName>publisher</PrincipalName>
  </Principal>
  </PolicyEntry>

  <OfflineLeasePeriod>
  <Duration>P31D</Duration>
  </OfflineLeasePeriod>

  <AuditSettings isTracked="true" />

  <PolicyValidityPeriod isAbsoluteTime="false">
  <ValidityPeriodRelative>
  <NotBeforeRelative>PT0S</NotBeforeRelative>

  <NotAfterRelative>P20D</NotAfterRelative>
  </ValidityPeriodRelative>
  </PolicyValidityPeriod>
 </Policy>

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To create a policy, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Set the policy’s attributes.
	Create a policy entry.
	Register the policy.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

The following JAR files must be added to your project’s classpath:

	adobe-rightsmanagement-client.jar
	namespace.jar (if AEM Forms is deployed on JBoss)
	jaxb-api.jar (if AEM Forms is deployed on JBoss)
	jaxb-impl.jar (if AEM Forms is deployed on JBoss)
	jaxb-libs.jar (if AEM Forms is deployed on JBoss)
	jaxb-xjc.jar (if AEM Forms is deployed on JBoss)
	relaxngDatatype.jar (if AEM Forms is deployed on JBoss)
	xsdlib.jar (if AEM Forms is deployed on JBoss)
	adobe-livecycle-client.jar
	adobe-usermanager-client.jar
	adobe-utilities.jar
	jbossall-client.jar (use a different JAR file if AEM Forms is not deployed on JBoss)

For information about the location of these JAR files, see Including AEM Forms Java library files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, create a Document Security service client object.

Set the policy’s attributes

To create a policy, set policy attributes. A mandatory attribute is the policy name. Policy names must be unique for each policy set. A policy set is simply a collection of policies. There can be two policies with the same name if the policies belong to separate policy sets. However, two policies within a single policy set cannot have the same policy name.

Another useful attribute to set is the validity period. A validity period is the time period during which a policy-protected document is accessible to authorized recipients. If you do not set this attribute, then the policy is always valid.

A validity period can be set to one of these options:

	A set number of days that the document is accessible from the time which the document is published
	An end date after which the document is not accessible
	A specific date range for which the document is accessible
	Always valid

You can specify just a start date, which results in the policy being valid after the start date. If you specify just an end date, the policy is valid until the end date. However, an exception is thrown if both a start date and an end date are not defined.

When setting attributes that belong to a policy, you can also set encryption settings. These encryption settings take affect when the policy is applied to a document. You can specify the following encryption values:

	AES256: Represents the AES encryption algorithm with a 256-bit key.
	AES128: Represents the AES encryption algorithm with a 128-bit key.
	NoEncryption: Represents no encryption.

When specifying the NoEncryption option, you cannot set the PlaintextMetadata option to false. If you attempt to do so, an exception is thrown.

NOTE

For information about other attributes that you can set, see the Policy interface description in the AEM Forms API Reference.

Create a policy entry

A policy entry attaches principals, which are groups and users, and permissions to a policy. A policy must have at least one policy entry. Assume, for example, that you perform these tasks:

	Create and register a policy entry that enables a group to only view a document while online and prohibits recipients from copying it.
	Attach the policy entry to the policy.
	Secure a document with the policy by using Acrobat.

These actions result in recipients only being able to view the document online and not being able to copy it. The document remains secure until security is removed from it.

Register the policy

A new policy must be registered before it can be used. After you register a policy, you can use it to protect documents.

Create a policy using the Java API

Create a policy by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Set the policy’s attributes.

	Create a Policy object by invoking the InfomodelObjectFactory object’s static createPolicy method. This method returns a Policy object.
	Set the policy’s name attribute by invoking the Policy object’s setName method and passing a string value that specifies the policy name.
	Set the policy’s description by invoking the Policy object’s setDescription method and passing a string value that specifies the policy’s description.
	Set the policy set to which the new policy belongs by invoking the Policy object’s setPolicySetName method and passing a string value that specifies the policy set name. (You can specify null for this parameter value that results in the policy being added to the My Policies policy set.)
	Create the policy’s validity period by invoking the InfomodelObjectFactory object’s static createValidityPeriod method. This method returns a ValidityPeriod object.
	Set the number of days for which a policy-protected document is accessible by invoking the ValidityPeriod object’s setRelativeExpirationDays method and passing an integer value that specifies the number of days.
	Set the policy’s validity period by invoking the Policy object’s setValidityPeriod method and passing the ValidityPeriod object.

	
Create a policy entry.

	Create a policy entry by invoking the InfomodelObjectFactory object’s static createPolicyEntry method. This method returns a PolicyEntry object.
	Specify the policy’s permissions by invoking the InfomodelObjectFactory object’s static createPermission method. Pass a static data member that belongs to the Permission interface that represents the permission. This method returns a Permission object. For example, to add the permission that enables users to copy data from a policy-protected PDF document, pass Permission.COPY. (Repeat this step for each permission to add).
	Add the permission to the policy entry by invoking the PolicyEntry object’s addPermission method and passing the Permission object. (Repeat this step for each Permission object that you created).
	Create the policy principal by invoking the InfomodelObjectFactory object’s static createSpecialPrincipal method. Pass a data member that belongs to the InfomodelObjectFactory object that represents the principal. This method returns a Principal object. For example, to add the publisher of the document as the principal, pass InfomodelObjectFactory.PUBLISHER_PRINCIPAL.
	Add the principal to the policy entry by invoking the PolicyEntry object’s setPrincipalmethod and passing the Principal object.
	Add the policy entry to the policy by invoking the Policy object’s addPolicyEntry method and passing the PolicyEntry object.

	
Register the policy.

	
Create a PolicyManager object by invoking the DocumentSecurityClient object’s getPolicyManager method.

	
Register the policy by invoking the PolicyManager object’s registerPolicy method and passing the following values:

	The Policy object that represents the policy to register.

	
A string value that represents the policy set that the policy belongs to.

If you use a AEM forms administrator account within connection settings to create the DocumentSecurityClient object, then specify the policy set name when you invoke the registerPolicy method. If you pass a null value for the policy set, the policy is created in the administrators My Policies policy set.

If you use a Document Security user within connection settings, then you can invoke the overloaded registerPolicy method that accepts only the policy. That is, you do not need to specify the policy set name. However, the policy is added to the policy set named My Policies. If you do not want to add the new policy to this policy set, then specify a policy set name when you invoke the registerPolicy method.

NOTE

When creating a policy, reference an existing policy set. If you specify a policy set that does not exist, then an exception is thrown.

For code examples using the Document Security service, see the following:

	“Quick Start (SOAP mode): Creating a policy using the Java API”

Create a policy using the web service API

Create a policy by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Set the policy’s attributes.

	Create a PolicySpec object by using its constructor.
	Set the policy’s name by assigning a string value to the PolicySpec object’s name data member.
	Set the policy’s description by assigning a string value to the PolicySpec object’s description data member.
	Set the policy set to which the policy will belong by assigning a string value to the PolicySpec object’s policySetName data member. You must specify an existing policy set name. (You can specify null for this parameter value that results in the policy being added to My Policies.)
	Set the policy’s offline lease period by assigning an integer value to the PolicySpec object’s offlineLeasePeriod data member.
	Set the PolicySpec object’s policyXml data member with a string value that represents PDRL XML data. To perform this task, create a .NET StreamReader object by using its constructor. Pass the location of a PDRL XML file that represents the policy to the StreamReader constructor. Next, invoke the StreamReader object’s ReadLine method and assign the return value to a string variable. Iterate through the StreamReader object until the ReadLine method returns null. Assign the string variable to the PolicySpec object’s policyXml data member.

	
Create a policy entry.

It is not necessary to create a policy entry when creating a policy using the Document Security web service API. The policy entry is defined in the PDRL document.

	
Register the policy.

Register the policy by invoking the DocumentSecurityServiceClient object’s registerPolicy method and passing the following values:

	The PolicySpec object that represents the policy to register.
	A string value that represents the policy set that the policy belongs to. You can specify a null value which results in the policy being added to the MyPolices policy set.

If you use a AEM forms administrator account within connection settings to create the DocumentSecurityClient object, specify the policy set name when you invoke the registerPolicy method.

If you use a Document SecurityDocument Security user within connection settings, then you can invoke the overloaded registerPolicy method that accepts only the policy. That is, you do not need to specify the policy set name. However, the policy is added to the policy set named My Policies. If you do not want to add the new policy to this policy set, then specify a policy set name when you invoke the registerPolicy method.

NOTE

When creating a policy and you specify a policy set, ensure that you specify an existing policy set. If you specify a policy set that does not exist, then an exception is thrown.

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Creating a policy using the web service API”
	“Quick Start (SwaRef): Creating a policy using the web service API”

Modifying Policies

You can modify an existing policy using the Document Security Java API or web service API. To make changes to an existing policy, you retrieve it, modify it, and then update the policy on the server. For example, assume that you retrieve an existing policy and extend its validity period. Before the change takes effect, you must update the policy.

You can modify a policy when business requirements change and the policy no longer reflects these requirements. Instead of creating a new policy, you can simply update an existing policy.

To modify policy attributes using a web service (for example, using Java proxy classes that were created with JAX-WS), you must ensure that the policy is registered with the Document Security service. You can then reference the existing policy by using the PolicySpec.getPolicyXml method and modify the policy attributes by using the applicable methods. For example, you can modify the offline lease period by invoking the PolicySpec.setOfflineLeasePeriod method.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To modify an existing policy, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve an existing policy.
	Change policies attributes.
	Update the policy.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Securityservice operation, you must create a Document Security service client object. If you are using the Java API, create a RightsManagementClient object. If you are using the Document Security web service API, create a RightsManagementServiceService object.

Retrieve an existing policy

You must retrieve an existing policy in order to modify it. To retrieve a policy, specify the policy name and the policy set to which the policy belongs. If you specify a null value for the policy set name, the policy is retrieved from the My Policies policy set.

Set the policy’s attributes

To modify a policy, you modify the value of policy attributes. The only policy attribute that you cannot change is the name attribute. For example, to change the policy’s offline lease period, you can modify the value of the policy’s offline lease period attribute.

When modifying a policy’s offline lease period using a web service, the offlineLeasePeriod field on the PolicySpec interface is ignored. To update the offline lease period, modify the OfflineLeasePeriod element in the PDRL XML document. Then reference the updated PDRL XML document by using the PolicySpec interface’s policyXML data member.

NOTE

For information about other attributes that you can set, see the Policy interface description in the AEM Forms API Reference.

Update the policy

Before the changes that you make to a policy take affect, you must update the policy with the Document Security service. Changes to policies that are protecting documents are updated the next time that the policy-protected document is synchronized with the Document Security service.

Modify existing policies using the Java API

Modify an existing policy by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve an existing policy.

	
Create a PolicyManager object by invoking the RightsManagementClient object’s getPolicyManager method.

	
Create a Policy object that represents the policy to update by invoking the PolicyManager object’s getPolicy method and passing the following values”

	A string value that represents the policy set name to which the policy belongs. You can specify null that results in the MyPolicies policy set being used.
	A string value that represents the policy name.

	
Set the policy’s attributes.

Change the policy’s attributes to meet your business requirements. For example, to change the policy’s offline lease period, invoke the Policy object’s setOfflineLeasePeriod method.

	
Update the policy.

Update the policy by invoking PolicyManager object’s updatePolicy method. Pass the Policy object that represents the policy to update.

Code examples

For code examples using the Document Security service, see the Quick Start(SOAP mode): Modifying a policy using the Java API section.

Modify existing policies using the web service API

Modify an existing policy by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve an existing policy.

Create a PolicySpec object that represents the policy to modify by invoking the RightsManagementServiceClient object’s getPolicy method and passing the following values:

	A string value that specifies the policy set name to which the policy belongs. You can specify null that results in the MyPolicies policy set being used.
	A string value that specifies the name of the policy.

	
Set the policy’s attributes.

Change the policy’s attributes to meet your business requirements.

	
Update the policy.

Update the policy by invoking the RightsManagementServiceClient object’s updatePolicyFromSDK method and passing the PolicySpec object that represents the policy to update.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Modifying a policy using the web service API”
	“Quick Start (SwaRef): Modifying a policy using the web service API”

Deleting Policies

You can delete an existing policy using the Document Security Java API or web service API. After a policy is deleted, it can no longer be used to protect documents. However, existing policy-protected documents that are using the policy are still protected. You can delete a policy when a newer one becomes available.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To delete an existing policy, perform the following steps:

	Include project files
	Create a Document Security Client API object.
	Delete the policy.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object. If you are using the Java API, create a RightsManagementClient object. If you are using the Document Security web service API, create a RightsManagementServiceService object.

Delete the policy

To delete a policy, you specify the policy to delete and the policy set to which the policy belongs. The user whose settings are used to invoke AEM Forms must have permission to delete the policy; otherwise an exception occurs. Likewise, if you attempt to delete a policy that does not exist, an exception occurs.

Delete policies using the Java API

Delete a policy by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Delete the policy.

	
Create a PolicyManager object by invoking the RightsManagementClient object’s getPolicyManager method.

	
Delete the policy by invoking the PolicyManager object’s deletePolicy method and passing the following values:

	A string value that specifies the policy set name to which the policy belongs. You can specify null that results in the MyPolicies policy set being used.
	A string value that specifies the name of the policy to delete.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Deleting a policy using the Java API”

Delete policies using the web service API

Delete a policy by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Delete the policy.

Delete a policy by invoking the RightsManagementServiceClient object’s deletePolicy method and passing the following values:

	A string value that specifies the policy set name to which the policy belongs. You can specify null that results in the MyPolicies policy set being used.
	A string value that specifies the name of the policy to delete.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Deleting a policy using the web service API”
	“Quick Start (SwaRef): Deleting a policy using the web service API”

Applying Policies to PDF Documents

You can apply a policy to a PDF document in order to secure the document. By applying a policy to a PDF document, you restrict access to the document. You cannot apply a policy to a document if the document is already secured with a policy.

While the document is open, you can also restrict access to Acrobat and Adobe Reader features, including the ability to print and copy text, make changes, and add signatures and comments to a document. In addition, you can revoke a policy-protected PDF document when you no longer want users to access the document.

You can monitor the use of a policy-protected document after you distribute it. That is, you can see how the document is being used and who is using it. For example, you can find out when somebody has opened the document.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To apply a policy to a PDF document, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve a PDF document to which a policy is applied.
	Apply an existing policy to the PDF document.
	Save the policy-protected PDF document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client APIobject

Before you can programmatically perform a Document Security service operation, create a Document Security service client object. If you are using the Java API, create a DocumentSecurityClient object. If you are using the Document Security web service API, create a DocumentSecurityServiceService object.

Retrieve a PDF document

You can retrieve a PDF document in order to apply a policy. After you apply a policy to the PDF document, users are restricted when using the document. For example, if the policy does not enable the document to be opened while offline, then users must be online to open the document.

Apply an existing policy to the PDF document

To apply a policy to a PDF document, reference an existing policy and specify which policy set the policy belongs to. The user who is setting the connection properties must have access to the specified policy. If not, an exception occurs.

Save the PDF document

After the Document Security service applies a policy to a PDF document, you can save the policy-protected PDF document as a PDF file.

See also

Including AEM Forms Java library files

Setting connection properties

Revoking Access to Documents

Apply a policy to a PDF document using the Java API

Apply a policy to a PDF document by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a PDF document.

	Create a java.io.FileInputStream object that represents the PDF document by using its constructor. Pass a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Apply an existing policy to the PDF document.

	
Create a DocumentManager object by invoking the RightsManagementClient object’s getDocumentManager method.

	
Apply a policy to the PDF document by invoking the DocumentManager object’s protectDocument method and passing the following values:

	The com.adobe.idp.Document object that contains the PDF document to which the policy is applied.
	A string value that specifies the name of the document.
	A string value that specifies the name of the policy set to which the policy belongs. You can specify a null value that results in the MyPolicies policy set being used.
	A string value that specifies the policy name.
	A string value that represents the name of the user manager domain of the user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the next parameter value must be null).
	A string value that represents the name of the canonical name of the user manager user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the previous parameter value must be null).
	A com.adobe.livecycle.rightsmanagement.Locale that represents the locale that is used for selecting the MS Office template. This parameter value is optional and not used for PDF documents. To secure a PDF document, specify null.

The protectDocument method returns a RMSecureDocumentResult object that contains the policy-protected PDF document.

	
Save the PDF document.

	Invoke the RMSecureDocumentResult object’s getProtectedDoc method to get the policy-protected PDF document. This method returns a com.adobe.idp.Document object.
	Create a java.io.File object and ensure that the file extension is PDF.
	Invoke the com.adobe.idp.Document object’s copyToFile method to copy the contents of the Document object to the file (ensure that you use the Document object that was returned by the getProtectedDoc method).

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (EJB mode): Applying a policy to a PDF document using the Java API”
	“Quick Start (SOAP mode): Applying a policy to a PDF document using the Java API”

See also

Including AEM Forms Java library files

Setting connection properties

Apply a policy to a PDF document using the web service API

Apply a policy to a PDF document by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a PDF document.

	Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document to which a policy is applied.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the PDF document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. Determine the byte array size by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method. Pass the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Apply an existing policy to the PDF document.

Apply a policy to the PDF document by invoking the RightsManagementServiceClient object’s protectDocument method and passing the following values:

	The BLOB object that contains the PDF document to which the policy is applied.
	A string value that specifies the name of the document.
	A string value that specifies the name of the policy set to which the policy belongs. You can specify a null value that results in the MyPolicies policy set being used.
	A string value that specifies the policy name.
	A string value that represents the name of the user manager domain of the user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the next parameter value must be null).
	A string value that represents the name of the canonical name of the user manager user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the previous parameter value must be null).
	A RMLocale value that specifies the locale value (for example, RMLocale.en).
	A string output parameter that is used to store the policy identifier value.
	A string output parameter that is used to store the policy-protected identifier value.
	A string output parameter that is used to store the mime type (for example, application/pdf).

The protectDocument method returns a BLOB object that contains the policy-protected PDF document.

	
Save the PDF document.

	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the policy-protected PDF document.
	Create a byte array that stores the data content of the BLOB object that was returned by the protectDocument method. Populate the byte array by getting the value of the BLOB object’s MTOM data member.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.
	Write the contents of the byte array to a PDF file by invoking the System.IO.BinaryWriter object’s Write method and passing the byte array.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Applying a policy to a PDF document using the web service API”
	“Quick Start (SwaRef): Applying a policy to a PDF document using the web service API ”

Removing Policies from PDF Documents

You can remove a policy from a policy-protected document in order to remove security from the document. That is, if you no longer want the document to be protected by a policy. If you want to update a policy-protected document with a newer policy, then instead of removing the policy and adding the updated policy, it is more efficient to switch the policy.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To remove a policy from a policy-protected PDF document, perform the following steps:

	Include project files
	Create a Document Security Client API object.
	Retrieve a policy-protected PDF document.
	Remove the policy from the PDF document.
	Save the unsecured PDF document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, create a Document Security service client object.

Retrieve a policy-protected PDF document

You can retrieve a policy-protected PDF document in order to remove a policy. If you attempt to remove a policy from a PDF document that is not protected by a policy, you will cause an exception.

Remove the policy from the PDF document

You can remove a policy from a policy-protected PDF document provided that an administrator is specified in the connection settings. If not, then the policy used to secure a document must contain the SWITCH_POLICY permission in order to remove a policy from a PDF document. Also, the user specified in the AEM Forms connection settings must also have that permission. Otherwise, an exception is thrown.

Save the unsecured PDF document

After the Document Security service removes a policy from a PDF document, you can save the unsecured PDF document as a PDF file.

See also

Including AEM Forms Java library files

Setting connection properties

Applying Policies to PDF Documents

Remove a policy from a PDF document using the Java API

Remove a policy from a policy-protected PDF document by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a policy-protected PDF document.

	Create a java.io.FileInputStream object that represents the policy-protected PDF document by using its constructor and passing a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Remove the policy from the PDF document.

	Create a DocumentManager object by invoking the DocumentSecurityClient object’s getDocumentManager method.
	Remove a policy from the PDF document by invoking the DocumentManager object’s removeSecurity method and passing the com.adobe.idp.Document object that contains the policy-protected PDF document. This method returns a com.adobe.idp.Document object that contains an unsecured PDF document.

	
Save the unsecured PDF document.

	Create a java.io.File object and ensure that the file extension is PDF.
	Invoke the Document object’s copyToFile method to copy the contents of the Document object to the file (ensure that you use the Document object that was returned by the removeSecurity method).

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Removing a policy from a PDF document using the Java API”

Remove a policy using the web service API

Remove a policy from a policy-protected PDF document using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a policy-protected PDF document.

	Create a BLOB object by using its constructor. The BLOB object is used to store the policy-protected PDF document from which the policy is removed.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the PDF document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Remove the policy from the PDF document.

Remove the policy from the PDF document by invoking the DocumentSecurityServiceClient object’s removePolicySecurity method and passing the BLOB object that contains the policy-protected PDF document. This method returns a BLOB object that contains an unsecured PDF document.

	
Save the unsecured PDF document.

	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the unsecured PDF document.
	Create a byte array that stores the data content of the BLOB object that was returned by the removePolicySecurity method. Populate the byte array by getting the value of the BLOB object’s MTOM field.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Removing a policy from a PDF document using the web service API ”
	“Quick Start (SwaRef): Removing a policy from a PDF document using the web service API”

See also

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Revoking Access to Documents

You can revoke access to a policy-protected PDF document resulting in all copies of the document being inaccessible to users. When a user attempts to open a revoked PDF document, they are redirected to a specified URL where a revised document can be viewed. The URL to where the user is redirected must be programmatically specified. When you revoke access to a document, the change takes effect the next time the user synchronizes with the Document Security service by opening the policy-protected document online.

The ability to revoke access to a document provides additional security. For example, assume a newer version of a document is available and you no longer want anyone viewing the outdated version. In this situation, access to the older document can be revoked, and nobody can view the document unless access is reinstated.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To revoke a policy-protected document, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve a policy-protected PDF document.
	Revoke the policy-protected document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object.

Retrieve a policy-protected PDF document

You must retrieve a policy-protected PDF document in order to revoke it. You cannot revoke a document that has already been revoked or is not a policy-protected document.

If you know the license identifier value of the policy-protected document, then it is not necessary to retrieve the policy-protected PDF document. However, in most cases, you will need to retrieve the PDF document in order to obtain the license identifier value.

Revoke the policy-protected document

To revoke a policy-protected document, specify the license identifier of the policy-protected document. In addition, you can specify the URL of a document that the user can view when they attempt to open the revoked document. That is, assume that an outdated document is revoked. When a user attempts to open the revoked document, they will see an updated document instead of the revoked document.

NOTE

If you attempt to revoke a document that is already revoked, an exception is thrown.

See also

Including AEM Forms Java library files

Setting connection properties

Applying Policies to PDF Documents

Reinstating Access to Revoked Documents

Revoke access to documents using the Java API

Revoke access to a policy-protected PDF document by using the Document Security API (Java):

	
Include project files

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a policy-protected PDF document

	Create a java.io.FileInputStream object that represent the policy-protected PDF document by using its constructor and passing a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Revoke the policy-protected document

	
Create a DocumentManager object by invoking the DocumentSecurityClient object’s getDocumentManager method.

	
Retrieve the license identifier value of the policy-protected document by invoking the DocumentManager object’s getLicenseId method. Pass the com.adobe.idp.Document object that represents the policy-protected document. This method returns a string value that represents the license identifier value.

	
Create a LicenseManager object by invoking the DocumentSecurityClient object’s getLicenseManager method.

	
Revoke the policy-protected document by invoking the LicenseManager object’s revokeLicense method and passing the following values:

	A string value that specifies the license identifier value of the policy-protected document (specify the return value of the DocumentManager object’s getLicenseId method).
	A static data member of the License interface that specifies the reason to revoke the document. For example, you can specify License.DOCUMENT_REVISED.
	A java.net.URL value that specifies the location to where a revised document is located. If you do not want to redirect a user to another URL, then you can pass null.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Revoking a document using the Java API”

Revoke access to documents using the web service API

Revoke access to a policy-protected PDF document by using the Document Security API (web service):

	
Include project files

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a policy-protected PDF document

	Create a BLOB object by using its constructor. The BLOB object is used to store a policy-protected PDF document that is revoked.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the policy-protected PDF document to revoke and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Revoke the policy-protected document

	
Retrieve the license identifier value of the policy-protected document by invoking the DocumentSecurityServiceClient object’s getLicenseID method and passing the BLOB object that represents the policy-protected document. This method returns a string value that represents the license identifier.

	
Revoke the policy-protected document by invoking the DocumentSecurityServiceClient object’s revokeLicense method and passing the following values:

	A string value that specifies the license identifier value of the policy-protected document (specify the return value of the DocumentSecurityServiceService object’s getLicenseId method).
	A static data member of the Reason enum that specifies the reason to revoke the document. For example, you can specify Reason.DOCUMENT_REVISED.
	A string value that specifies the URL location to where a revised document is located. If you do not want to redirect a user to another URL, then you can pass null.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Revoking a document using the web service API”
	“Quick Start (SwaRef): Revoking a document using the web service API”

See also

Removing Policies from Word Documents

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Reinstating Access to Revoked Documents

You can reinstate access to a revoked PDF document, resulting in all copies of the revoked document being accessible to users. When a user opens a reinstated document that was revoked, the user is able to view the document.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To reinstate access to a revoked PDF document, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve the license identifier of the revoked PDF document.
	Reinstate access to the revoked PDF document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object. If you are using the Java API, create a DocumentSecurityClient object. If you are using the Document Security web service API, create a DocumentSecurityServiceService object.

Retrieve the license identifier of the revoked PDF document

You must retrieve the license identifier of the revoked PDF document in order to reinstate a revoked PDF document. After you obtain the license identifier value, you can reinstate a revoked document. If you attempt to reinstate a document that is not revoked, you will cause an exception.

Reinstate access to the revoked PDF document

To reinstate access to a revoked PDF document, you must specify the license identifier of the revoked document. If you attempt to reinstate access to a PDF document that is not revoked, you will cause an exception.

See also

Including AEM Forms Java library files

Setting connection properties

Applying Policies to PDF Documents

Revoking Access to Documents

Reinstate access to revoked documents using the Java API

Reinstate access to a revoked document by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve the license identifier of the revoked PDF document.

	Create a java.io.FileInputStream object that represents the revoked PDF document by using its constructor and passing a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.
	Create a DocumentManager object by invoking the DocumentSecurityClient object’s getDocumentManager method.
	Retrieve the license identifier value of the revoked document by invoking the DocumentManager object’s getLicenseId method and passing the com.adobe.idp.Document object that represents the revoked document. This method returns a string value that represents the license identifier.

	
Reinstate access to the revoked PDF document.

	Create a LicenseManager object by invoking the DocumentSecurityClient object’s getLicenseManager method.
	Reinstate access to the revoked PDF document by invoking the LicenseManager object’s unrevokeLicense method and passing the license identifier value of the revoked document.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Reinstating access to a revoked document using the web service API”

Reinstate access to revoked documents using the web service API

Reinstate access to a revoked document using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve the license identifier of the revoked PDF document.

	Create a BLOB object by using its constructor. The BLOB object is used to store a revoked PDF document to which access is reinstated.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the revoked PDF document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Reinstate access to the revoked PDF document.

	Retrieve the license identifier value of the revoked document by invoking the DocumentSecurityServiceClient object’s getLicenseID method and passing the BLOB object that represents the revoked document. This method returns a string value that represents the license identifier.
	Reinstate access to the revoked PDF document by invoking the DocumentSecurityServiceClient object’s unrevokeLicense method and passing a string value that specifies the license identifier value of the revoked PDF document (pass the return value of the DocumentSecurityServiceClient object’s getLicenseId method).

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Reinstating access to a revoked document using the web service API”
	“Quick Start (SwaRef): Reinstating access to a revoked document using the web service API”

See also

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Inspecting Policy Protected PDF Documents

You can use the Document Security Service API (Java and web service) to inspect policy-protected PDF documents. Inspecting policy-protected PDF documents returns information about the policy-protected PDF document. You can, for example, determine the policy that was used to secure the document and the date when the document was secured.

You cannot perform this task if your version of LiveCycle is 8.x or an earlier version. Support for inspecting policy-protected documents is added in AEM Forms. If you attempt to inspect a policy-protected document using LiveCycle 8.x (or earlier), an exception is thrown.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To inspect a policy-protected PDF document, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve a policy-protected document to inspect.
	Obtain information about the policy-protected document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, include the necessary JAR files. If you are using web services, make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, create a Document Security service client object. If you are using the Java API, create a RightsManagementClient object. If you are using the Document Security web service API, create a RightsManagementServiceService object.

Retrieve a policy-protected document to inspect

To inspect a policy-protected document, retrieve it. If you attempt to inspect a document that is not secured with a policy or is revoked, an exception is thrown.

Inspect the document

After you retrieve a polciy-protected document, you can inspect it.

Obtain information about the policy-protected document

After you inspect a policy-protected PDF document, you can obtain information about it. For example, you can determine the policy that is used to secure the document.

If you secure a document with a policy that belongs to My Policies and then call RMInspectResult.getPolicysetName or RMInspectResult.getPolicysetId, null is returned.

If the document is secured using a policy that is contained in a policy set (other than My Policies) then RMInspectResult.getPolicysetName and RMInspectResult.getPolicysetId return valid strings.

See also

Including AEM Forms Java library files

Setting connection properties

Inspect Policy Protected PDF Documents using the Java API

Inspect a policy-protected PDF document by using the Document Security Service API (Java):

	
Include project files.

Include client JAR files, such as the adobe-rightsmanagement-client.jar, in your Java project’s class path. For information about the location of these files, see Including AEM Forms Java library files.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties. (See Setting connection properties.)
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a policy-protected document to inspect.

	Create a java.io.FileInputStream object that represents the policy-protected PDF document by using its constructor. Pass a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Inspect the document.

	Create a DocumentManager object by invoking the RightsManagementClient object’s getDocumentManager method.
	Inspect the policy-protected document by invoking the LicenseManager object’s inspectDocument method. Pass the com.adobe.idp.Document object that contains the policy-protected PDF document. This method returns a RMInspectResult object that contains information about the policy-protected document.

	
Obtain information about the policy-protected document.

To obtain information about the policy-protected document, invoke the appropriate method that belongs RMInspectResult object. For example, to retrieve the policy name, invoke the RMInspectResult object’s getPolicyName method.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Inspecting policy protected PDF documents using the Java API”

Inspect Policy Protected PDF Documents using the web service API

Inspect a policy-protected PDF document by using the Document Security Service API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a policy-protected document to inspect.

	Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document to inspect.
	Create a System.IO.FileStream object by invoking its constructor. Pass a string value that represents the file location of the PDF document and the mode to open the file in.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method. Pass the byte array, starting position, and stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Inspect the document.

Inspect the policy-protected document by invoking the RightsManagementServiceClient object’s inspectDocument method. Pass the BLOB object that contains the policy-protected PDF document. This method returns a RMInspectResult object that contains information about the policy-protected document.

	
Obtain information about the policy-protected document.

To obtain information about the policy-protected document, get the value of the appropriate field that belongs to the RMInspectResult object. For example, to retrieve the policy name, get the value of the RMInspectResult object’s policyName field.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Inspecting policy protected PDF documents using the web service API”
	“Quick Start (SwaRef): Inspecting policy protected PDF documents using the web service API”

See also

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Creating Watermarks

Watermarks help ensure the security of a document by uniquely identifying the document and controlling copyright infringement. For example, you can create and place a watermark that states Confidential on all pages of a document. After a watermark is created, you can include it as part of a policy. That is, you can set the policy’s watermark attribute with the newly created watermark. After a policy that contains a watermark is applied to a document, the watermark appears in the policy-protected document.

NOTE

Only users with Document Security administrative privileges can create watermarks. That is, you must specify such a user when defining connection settings required to create a Document Security service client object.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To create a watermark, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Set the watermarks attributes.
	Register the watermark with the Document Security service.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object. If you are using the Java API, create a RightsManagementClient object. If you are using the Document Security web service API, create a RightsManagementServiceService object.

Set the watermarks attributes

To create a new watermark, you must set watermark attributes. The name attribute must always be defined. In addition to the name attribute, you must set at least one of the following attributes:

	Custom Text
	DateIncluded
	UserIdIncluded
	UserNameIncluded

The following table lists key and value pairs that are required when creating a watermark using web services.

	Key Name
	Description
	Value

	WaterBackCmd:IS_USERNAME_ENABLED
	Specifies if the user name of the user opening the document is part of the watermark.
	True or False

	WaterBackCmd:IS_USERID_ENABLED
	Specifies if the identification of the user opening the document is part of the watermark.
	True or False

	WaterBackCmd:IS_CURRENTDATE_ENABLED
	Specifies if the current date is part of the watermark.
	True or False

	WaterBackCmd:IS_CUSTOMTEXT_ENABLED
	If this value is true, then the value of the custom text must be specified using WaterBackCmd:SRCTEXT.
	True or False

	WaterBackCmd:OPACITY
	Specifies the opacity of the watermark. The default value is 0.5 if it is not specified.
	A value between 0.0 and 1.0.

	WaterBackCmd:ROTATION
	Specifies the rotation of the watermark. The default value is 0 degrees.
	A value between 0 and 359.

	WaterBackCmd:SCALE
	If this value is specified, then WaterBackCmd:IS_SIZE_ENABLED must be present and the value must be true. If this attribute is not specified, the default behavior is fit to page.
	A value greater than 0.0 and less than or equal to 1.0.

	WaterBackCmd:HORIZ_ALIGN
	Specifies the watermark’s horizontal alignment. The default value is center.
	left, center, or right

	WaterBackCmd:VERT_ALIGN
	Specifies the watermark’s vertical alignment. The default value is center.
	top, center, or bottom

	WaterBackCmd:IS_USE_BACKGROUND
	Specifies if the watermark is a background. The default value is false.
	True or False

	WaterBackCmd:IS_SIZE_ENABLED
	True if a custom scale is specified. If this value is true, SCALE must also be specified. If this value is false, then the default is fit to page.
	True or False

	WaterBackCmd:SRCTEXT
	Specifies the custom text for a watermark. If this value is present, then WaterBackCmd:IS_CUSTOMTEXT_ENABLED must also be present and set to true.
	True or False

All watermarks must have one of the following attributes defined:

	WaterBackCmd:IS_USERNAME_ENABLED
	WaterBackCmd:IS_USERID_ENABLED
	WaterBackCmd:IS_CURRENTDATE_ENABLED
	WaterBackCmd:IS_CUSTOMTEXT_ENABLED

All other attributes are optional.

Register the watermark

A new watermark must be registered with the Document Security service before it can be used. After you register a watermark, you can use it within policies.

See also

Including AEM Forms Java library files

Setting connection properties

Applying Policies to PDF Documents

Create watermarks using the Java API

Create a watermark by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as the adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Set the watermark attributes

	Create a Watermark object by invoking the InfomodelObjectFactory object’s static createWatermark method. This method returns a Watermark object.
	Set the watermark’s name attribute by invoking the Watermark object’s setName method and passing a string value that specifies the policy name.
	Set the watermark’s background attribute by invoking the Watermark object’s setBackground method and passing true. By setting this attribute, the watermark appears in the background of the document.
	Set the watermark’s custom text attribute by invoking the Watermark object’s setCustomText method and passing a string value that represents the watermark’s text.
	Set the watermark’s opacity attribute by invoking the Watermark object’s setOpacity method and passing an integer value that specifies the opacity level. A value of 100 indicates the watermark is completely opaque and a value of 0 indicates the watermark is completely transparent.

	
Register the watermark.

	Create a WatermarkManager object by invoking the RightsManagementClient object’s getWatermarkManager method. This method returns a WatermarkManager object.
	Register the watermark by invoking the WatermarkManager object’s registerWatermark method and passing the Watermark object that represents the watermark to register. This method returns a string value that represents the watermark’s identification value.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (SOAP mode): Creating a watermark using the Java API”

Create watermarks using the web service API

Create a watermark by using the Document Security API (web service):

	
Create a Document Security Client API object.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Set the watermark attributes.

	Create a WatermarkSpec object by invoking the WatermarkSpec constructor.
	Set the watermark’s name by assigning a string value to the WatermarkSpec object’s name data member.
	Set the watermark’s id attribute by assigning a string value to the WatermarkSpec object’s id data member.
	For each watermark property to set, create a separate MyMapOf_xsd_string_To_xsd_anyType_Item object.
	Set the key value by assigning a value to the MyMapOf_xsd_string_To_xsd_anyType_Item object’s key data member (for example, WaterBackCmd:OPACITY).
	Set the value by assigning a value to the MyMapOf_xsd_string_To_xsd_anyType_Item object’s value data member (for example, .25).
	Create a MyArrayOf_xsd_anyType object. For each MyMapOf_xsd_string_To_xsd_anyType_Item object, invoke the MyArrayOf_xsd_anyType object’s Add method. Pass the MyMapOf_xsd_string_To_xsd_anyType_Item object.
	Assign the MyArrayOf_xsd_anyType object to the WatermarkSpec object’s values data member.

	
Register the watermark.

Register the watermark by invoking the RightsManagementServiceClient object’s registerWatermark method and passing the WatermarkSpec object that represents the watermark to register.

Code examples

For code examples using the Document Security service, see the following Quick Starts:

	“Quick Start (MTOM): Creating a watermark using the web service API”
	“Quick Start (SwaRef): Creating a watermark using the web service API”

See also

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Modifying Watermarks

You can modify an existing watermark using the Document Security Java API or web service API. To make changes to an existing watermark, you retrieve it, modify its attributes, and then update it on the server. For example, assume that you retrieve an watermark and modify its opacity attribute. Before the change takes effect, you must update the watermark.

When you modify a watermark, the change impacts future documents that have the watermark applied to them. That is, existing PDF documents that contain the watermark are not affected.

NOTE

Only users with Document Security administrative privileges can modify watermarks. That is, you must specify such a user when defining connection settings required to create a Document Security service client object.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To modify a watermark, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve the watermark to modify.
	Set the watermarks attributes.
	Update the watermark.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object. If you are using the Java API, create a DocumentSecurityClient object. If you are using the Document Security web service API, create a DocumentSecurityServiceService object.

Retrieve the watermark to modify

To modify a watermark, you must retrieve an existing watermark. You can retrieve a watermark by specifying its name or by specifying its identifier value.

Set the watermarks attributes

To modify an existing watermark, change the value of one or more watermark attributes. When programmatically updating a watermark using a web service, you must set all of the attributes that were originally set, even if the value does not change. For example, assume the following watermark attributes are set: WaterBackCmd:IS_USERID_ENABLED, WaterBackCmd:IS_CUSTOMTEXT_ENABLED, WaterBackCmd:OPACITY, and WaterBackCmd:SRCTEXT. Although the only attribute that you want to modify is WaterBackCmd:OPACITY, you must set the other values are well.

NOTE

When using the Java API to modify a watermark, you do not need to specify all attributes. Set the watermark attribute that you want to modify.

NOTE

For information about the watermark attribute names, see Creating Watermarks.

Update the watermark

After you modify a watermark’s attributes, you must update the watermark.

See also

Including AEM Forms Java library files

Setting connection properties

Creating Watermarks

Modify watermarks using the Java API

Modify a watermark by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as the adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve the watermark to modify.

Create a WatermarkManager object by invoking the DocumentSecurityClient object’s getWatermarkManager method and pass a string value that specifies the watermark name. This method returns a Watermark object that represents the watermark to modify.

	
Set the watermark attributes.

Set the watermark’s opacity attribute by invoking the Watermark object’s setOpacity method and passing an integer value that specifies the opacity level. A value of 100 indicates the watermark is completely opaque and a value of 0 indicates the watermark is completely transparent.

NOTE

This example modifies only the opacity attribute.

	
Update the watermark.

	Update the watermark by invoking the WatermarkManager object’s updateWatermark method and pass the Watermark object whose attribute was modified.

Code examples

For code examples using the Document Security service, see the Quick Start(SOAP mode): Modifying a watermark using the Java API section.

Modify watermarks using the web service API

Modify a watermark by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/DocumentSecurityService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve the watermark to modify.

Retrieve the watermark to modify by invoking the DocumentSecurityServiceClient object’s getWatermarkByName method. Pass a string value that specifies the watermark name. This method returns a WatermarkSpec object that represents the watermark to modify.

	
Set the watermark attributes.

	For each watermark property to update, create a separate MyMapOf_xsd_string_To_xsd_anyType_Item object.
	Set the key value by assigning a value to the MyMapOf_xsd_string_To_xsd_anyType_Item object’s key data member (for example, WaterBackCmd:OPACITY).
	Set the value by assigning a value to the MyMapOf_xsd_string_To_xsd_anyType_Item object’s value data member (for example, .50).
	Create a MyArrayOf_xsd_anyType object. For each MyMapOf_xsd_string_To_xsd_anyType_Item object, invoke the MyArrayOf_xsd_anyType object’s Add method. Pass the MyMapOf_xsd_string_To_xsd_anyType_Item object.
	Assign the MyArrayOf_xsd_anyType object to the WatermarkSpec object’s values data member.

	
Update the watermark.

Update the watermark by invoking the DocumentSecurityServiceClient object’s updateWatermark method and passing the WatermarkSpec object that represents the watermark to modify.

Code examples

For code examples using the Document Security service, see the following Quick Start:

	“Quick Start (MTOM): Modifying a watermark using the web service API”

Searching for Events

The Rights Management service tracks specific actions as they occur, such as applying a policy to a document, opening a policy-protected document, and revoking access to documents. Event auditing must be enabled for the Rights Management service or events are not tracked.

Events fall into one of the following categories:

	Administrator events are actions related to an administrator, such as creating a new administrator account.
	Document events are actions related to a document, such as closing a policy-protected document.
	Policy events are actions related to a policy, such as creating a new policy.
	Service events are actions related to the Rights Management service, such as synchronizing with the user directory.

You can search for specify specific events by using the Rights Management Java API or web service API. By searching for events, you can perform tasks, such as creating a log file of certain events.

NOTE

For more information about the Rights Management service, see Services Reference for AEM Forms.

Summary of steps

To search for a Rights Management event, perform the following steps:

	Include project files.
	Create a Rights Management Client API object.
	Specify the event for which to search.
	Search for the event.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Rights Management Client API object

Before you can programmatically perform a Rights Management service operation, you must create a Rights Management service client object. If you are using the Java API, create a DocumentSecurityClient object. If you are using the Rights Management web service API, create a DocumentSecurityServiceService object.

Specify the events to search for

You must specify the event to search for. For example, you can search for the policy create event, which occurs when a new policy is created.

Search for the event

After you specify the event to search for, you can use either the Rights Management Java API or the Rights Management web service API to search for the event.

See also

Including AEM Forms Java library files

Setting connection properties

Search for events using the Java API

Search for events by using the Rights Management API (Java):

	
Include project files

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Rights Management Client API object

Create a DocumentSecurityClient object by using its constructor and passing a ServiceClientFactory object that contains connection properties.

	
Specify the events to search for

	Create an EventManager object by invoking the DocumentSecurityClient object’s getEventManager method. This method returns an EventManager object.
	Create an EventSearchFilter object by invoking its constructor.
	Specify the event for which to search by invoking the EventSearchFilter object’s setEventCode method and passing a static data member that belongs to the EventManager class that represents the event for which to search. For example, to search for the policy create event, pass EventManager.POLICY_CREATE_EVENT.

NOTE

You can define additional search criteria by invoking EventSearchFilter object methods. For example, invoke the setUserName method to specify a user associated with the event.

	
Search for the event

Search for the event by invoking the EventManager object’s searchForEvents method and passing the EventSearchFilter object that defines the event search criteria. This method returns an array of Event objects.

Code examples

For code examples using the Rights Management service, see the following Quick Starts:

	“Quick Start (SOAP): Searching for events using the Java API”

Search for events using the web service API

Search for events by using the Rights Management API (web service):

	
Include project files

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Rights Management Client API object

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Specify the events to search for

	Create an EventSpec object by using its constructor.
	Specify the start of the time period during which the event occurred by setting the EventSpec object’s firstTime.date data member with DataTime instance that represents the start of the date range when the event occurred.
	Assign the value true to the EventSpec object’s firstTime.dateSpecified data member.
	Specify the end of the time period during which the event occurred by setting the EventSpec object’s lastTime.date data member with DataTime instance that represents the end of the date range when the event occurred.
	Assign the value true to the EventSpec object’s lastTime.dateSpecified data member.
	Set the event to search for by assigning a string value to the EventSpec object’s eventCode data member. The following table lists the numeric values that you can assign to this property:

 	Event type
	Value

	ALL_EVENTS
	999

	USER_CHANGE_PASSWORD_EVENT
	1000

	USER_REGISTER_EVENT
	1001

	USER_PREREGISTER_EVENT
	1002

	USER_ACTIVATE_EVENT
	1003

	USER_DEACTIVATE_EVENT
	1004

	USER_AUTHENTICATE_EVENT
	1005

	USER_AUTHENTICATE_DENY_EVENT
	1006

	USER_ACCOUNT_LOCK_EVENT
	1007

	USER_DELETE_EVENT
	1008

	USER_UPDATE_PROFILE_EVENT
	1009

	DOCUMENT_VIEW_EVENT
	2000

	DOCUMENT_PRINT_LOW_EVENT
	2001

	DOCUMENT_PRINT_HIGH_EVENT
	2002

	DOCUMENT_SIGN_EVENT
	2003

	DOCUMENT_ADD_ANNOTATION_EVENT
	2004

	DOCUMENT_FORM_FILL_EVENT
	2005

	DOCUMENT_CLOSE_EVENT
	2006

	DOCUMENT_MODIFY_EVENT
	2007

	DOCUMENT_CHANGE_SECURITY_HANDLER_EVENT
	2008

	DOCUMENT_SWITCH_POLICY_EVENT
	2009

	DOCUMENT_REVOKE_EVENT
	2010

	$1
	2011

	DOCUMENT_SECURE_EVENT
	2012

	DOCUMENT_UNKNOWN_CLIENT_EVENT
	2013

	DOCUMENT_CHANGE_REVOKE_URL_EVENT
	2014

	POLICY_CHANGE_EVENT
	3000

	POLICY_ENABLE_EVENT
	3001

	POLICY_DISABLE_EVENT
	3002

	POLICY_CREATE_EVENT
	3003

	POLICY_DELETE_EVENT
	3004

	POLICY_CHANGE_OWNER_EVENT
	3005

	SERVER_CLIENT_SYNC_EVENT
	4000

	SERVER_SYNC_DIR_INFO_EVENT
	4001

	SERVER_SYNC_DIR_COMPLETE_EVENT
	4002

	SERVER_VERSION_MISMATCH_EVENT
	4003

	SERVER_CONFIG_CHANGE_EVENT
	4004

	SERVER_ENABLE_OFFLINE_ACCESS_EVENT
	4005

	ADMIN_ADD_EVENT
	5000

	ADMIN_DELETE_EVENT
	5001

	ADMIN_EDIT_EVENT
	5002

	ADMIN_ACTIVATE_EVENT
	5003

	ADMIN_DEACTIVATE_EVENT
	5004

	ERROR_DIRECTORY_SERVICE_EVENT
	6000

	CREATED_POLICYSET_EVENT
	7000

	DELETED_POLICYSET_EVENT
	7001

	MODIFIED_POLICYSET_EVENT
	7002

	
Search for the event

Search for the event by invoking the DocumentSecurityServiceClient object’s searchForEvents method and passing the EventSpec object that represents the event for which to search and the maximum number of results. This method returns a MyArrayOf_xsd_anyType collection where each element is an AuditSpec instance. Using an AuditSpec instance, you can obtain information about the event such as the time that it occurred. The AuditSpec instance contains a timestamp data member that specifies this information.

Code examples

For code examples using the Rights Management service, see the following Quick Starts:

	“Quick Start (MTOM): Searching for events using the web service API”
	“Quick Start (SwaRef): Searching for events using the web service API”

See also

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Applying Policies to Word Documents

In addition to PDF documents, the Rights Mangement service supports additional document formats such as a Microsoft Word document (DOC file) and other Micosoft office file formats. For example, you can apply a policy to a Word document in order to secure it. By applying a policy to a Word document, you restrict access to the document. You cannot apply a policy to a document if the document is already secured with a policy.

You can monitor the use of a policy-protected Word document after you distribute it. That is, you can see how the document is being used and who is using it. For example, you can find out when somebody has opened the document.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To apply a policy to a Word document, perform the following steps:

	Include project files.
	Create a Document Security Client API object.
	Retrieve a Word document to which a policy is applied.
	Apply an existing policy to the Word document.
	Save the policy-protected Word document.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client APIobject

Before you can programmatically perform a Document Security service operation, you must create a Document Security service client object.

Retrieve a Word document

You must retrieve a Word document in order to apply a policy. After you apply a policy to the Word document, users are restricted when using the document. For example, if the policy does not enable the document to be opened while offline, then users must be online to open the document.

Apply an existing policy to the Word document

To apply a policy to a Word document, you must reference an existing policy and specify which policy set the policy belongs to. The user who is setting the connection properties must have access to the specified policy. If not, an exception occurs.

Save the Word document

After the Document Security service applies a policy to a Word document, you can save the policy-protected Word document as a DOC file.

See also

Including AEM Forms Java library files

Setting connection properties

Revoking Access to Documents

Apply a policy to a Word document using the Java API

Apply a policy to a Word document by using the Document Security API (Java):

	
Include project files.

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object.

	Create a ServiceClientFactory object that contains connection properties.
	Create a DocumentSecurityClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a Word document.

	Create a java.io.FileInputStream object that represents the Word document by using its constructor and passing a string value that specifies the location of the Word document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Apply an existing policy to the Word document.

	
Create a DocumentManager object by invoking the DocumentSecurityClient object’s getDocumentManager method.

	
Apply a policy to the Word document by invoking the DocumentManager object’s protectDocument method and passing the following values:

	The com.adobe.idp.Document object that contains the Word document to which the policy is applied.
	A string value that specifies the name of the document.
	A string value that specifies the name of the policy set to which the policy belongs. You can specify a null value that results in the MyPolicies policy set being used.
	A string value that specifies the policy name.
	A string value that represents the name of the user manager domain of the user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the next parameter value must be null).
	A string value that represents the name of the canonical name of the user manager user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the previous parameter value must be null).
	A com.adobe.livecycle.rightsmanagement.Locale that represents the locale that is used for selecting the MS Office template. This parameter value is optional and you can specify null.

The protectDocument method returns a RMSecureDocumentResult object that contains the policy-protected Word document.

	
Save the Word document.

	Invoke the RMSecureDocumentResult object’s getProtectedDoc method to get the policy-protected Word document. This method returns a com.adobe.idp.Document object.
	Create a java.io.File object and ensure that the file extension is DOC.
	Invoke the com.adobe.idp.Document object’s copyToFile method to copy the contents of the Document object to the file (ensure that you use the Document object that was returned by the getProtectedDoc method).

Code examples

For code examples using the Document Security service, see the following Quick Start:

	“Quick Start (SOAP mode): Applying a policy to a Word document using the Java API”

Apply a policy to a Word document using the web service API

Apply a policy to a Word document by using the Document Security API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/DocumentSecurityService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object.

	
Create a DocumentSecurityServiceClient object by using its default constructor.

	
Create a DocumentSecurityServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/DocumentSecurityService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the DocumentSecurityServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field DocumentSecurityServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field DocumentSecurityServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a Word document.

	Create a BLOB object by using its constructor. The BLOB object is used to store a Word document to which a policy is applied.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the Word document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. Determine the byte array size by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method. Pass the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Apply an existing policy to the Word document.

Apply a policy to the Word document by invoking the DocumentSecurityServiceClient object’s protectDocument method and passing the following values:

	The BLOB object that contains the Word document to which the policy is applied.
	A string value that specifies the name of the document.
	A string value that specifies the name of the policy set to which the policy belongs. You can specify a null value that results in the MyPolicies policy set being used.
	A string value that specifies the policy name.
	A string value that represents the name of the user manager domain of the user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the next parameter value must be null).
	A string value that represents the name of the canonical name of the user manager user who is the publisher of the document. This parameter value is optional and can be null (if this parameter is null, then the previous parameter value must be null).
	A RMLocale value that specifies the locale value (for example, RMLocale.en).
	A string output parameter that is used to store the policy identifier value.
	A string output parameter that is used to store the policy-protected identifier value.
	A string output parameter that is used to store the mime type (for example, application/doc).

The protectDocument method returns a BLOB object that contains the policy-protected Word document.

	
Save the Word document.

	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the policy-protected Word document.
	Create a byte array that stores the data content of the BLOB object that was returned by the protectDocument method. Populate the byte array by getting the value of the BLOB object’s MTOM data member.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.
	Write the contents of the byte array to a Word file by invoking the System.IO.BinaryWriter object’s Write method and passing the byte array.

Code examples

For code examples using the Document Security service, see the following Quick Start:

	“Quick Start (MTOM): Applying a policy to a Word document using the web service API ”

Removing Policies from Word Documents

You can remove a policy from a policy-protected Word document in order to remove security from the document. That is, if you no longer want the document to be protected by a policy. If you want to update a policy-protected Word document with a newer policy, then instead of removing the policy and adding the updated policy, it is more efficient to switch the policy.

NOTE

For more information about the Document Security service, see Services Reference for AEM Forms.

Summary of steps

To remove a policy from a policy-protected Word document, perform the following steps:

	Include project files
	Create a Document Security Client API object.
	Retrieve a policy-protected Word document.
	Remove the policy from the Word document.
	Save the unsecured Word document.s

Include project files

Include necessary files into your development project. If you are creating a client application using Java, then include the necessary JAR files. If you are using web services, then make sure that you include the proxy files.

Create a Document Security Client API object

Before you can programmatically perform a Document Security service operation, create a Document Security service client object.

Retrieve a policy-protected Word document

You must retrieve a policy-protected Word document in order to remove a policy. If you attempt to remove a policy from a Word document that is not protected by a policy, you will cause an exception.

Remove the policy from the Word document

You can remove a policy from a policy-protected Word document provided that an administrator is specified in the connection settings. If not, then the policy used to secure a document must contain the SWITCH_POLICY permission in order to remove a policy from a Word document. Also, the user specified in the AEM Forms connection settings must also have that permission. Otherwise, an exception is thrown.

Save the unsecured Word document

After the Document Security service removes a policy from a Word document, you can save the unsecured Word document as a DOC file.

See also

Including AEM Forms Java library files

Setting connection properties

Applying Policies to Word Documents

Remove a policy from a Word document using the Java API

Remove a policy from a policy-protected Word document by using the Document Security API (Java):

	
Include project files

Include client JAR files, such as adobe-rightsmanagement-client.jar, in your Java project’s class path.

	
Create a Document Security Client API object

	Create a ServiceClientFactory object that contains connection properties.
	Create a RightsManagementClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve a policy-protected Word document

	Create a java.io.FileInputStream object that represents the policy-protected Word document by using its constructor and passing a string value that specifies the location of the Word document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Remove the policy from the Word document

	Create a DocumentManager object by invoking the RightsManagementClient object’s getDocumentManager method.
	Remove a policy from the Word document by invoking the DocumentManager object’s removeSecurity method and passing the com.adobe.idp.Document object that contains the policy-protected Word document. This method returns a com.adobe.idp.Document object that contains an unsecured Word document.

	
Save the unsecured Word document

	Create a java.io.File object and ensure that the file extension is DOC.
	Invoke the Document object’s copyToFile method to copy the contents of the Document object to the file (ensure that you use the Document object that was returned by the removeSecurity method).

Code examples

For code examples using the Document Security service, see the following Quick Start:

	“Quick Start (SOAP mode): Removing a policy from a Word document using the Java API ”

Remove a policy from a Word document using the web service API

Remove a policy from a policy-protected Word document by using the Document Security API (web service):

	
Include project files

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/RightsManagementService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Document Security Client API object

	
Create a RightsManagementServiceClient object by using its default constructor.

	
Create a RightsManagementServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/RightsManagementService?WSDL.) You do not need to use the lc_version attribute. This attribute is used when you create a service reference.)

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the RightsManagementServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field RightsManagementServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field RightsManagementServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.

	
Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve a policy-protected Word document

	Create a BLOB object by using its constructor. The BLOB object is used to store the policy-protected Word document from which the policy is removed.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the Word document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning its MTOM field with the contents of the byte array.

	
Remove the policy from the Word document

Remove the policy from the Word document by invoking the RightsManagementServiceClient object’s removePolicySecurity method and passing the BLOB object that contains the policy-protected Word document. This method returns a BLOB object that contains an unsecured Word document.

	
Save the unsecured Word document

	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the unsecured Word document.
	Create a byte array that stores the data content of the BLOB object that was returned by the removePolicySecurity method. Populate the byte array by getting the value of the BLOB object’s MTOM field.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.

Code examples

For code examples using the Document Security service, see the following Quick Start:

	“Quick Start (MTOM): Removing a policy from a Word document using the web service API”

See also

Invoking AEM Forms using MTOM

 Previous page

 Next page

 On this page

 View next:

 Learn

 Courses

 Recommended courses

 Tutorials

 Certification

 Instructor-led training

 Browse content library

 All Learning

 Search Results

 Documentation

 Documentation home

 Experience Cloud release notes

 Document Cloud release notes

 Community

 Community home

 Advertising Cloud

 Analytics

 Audience Manager

 Campaign Standard

 Experience Cloud

 Experience Manager

 Experience Platform

 Commerce

 Marketo Engage

 Target

 Workfront

 Feedback Program

 Support

 Experience Cloud support

 Document Cloud support

 Community forums

 Resources

 Adobe Developer

 Adobe status

 Adobe Account

 Log in to your account
 Manage my account

 Adobe

 About

 Careers

 Newsroom

 Corporate responsibility

 Investor Relations

 Supply chain

 Trust Center

 Events

 Diversity & Inclusion

 Integrity

 COVID-19 Responses

 Learn

 	
 Courses

	
 Recommended courses

	
 Tutorials

	
 Certification

	
 Instructor-led training

	
 Browse content library

	
 View all learning options

 Documentation

 	
 Documentation home

	
 Experience Cloud release notes

	
 Document Cloud release notes

 Community

 	
 Community home

	
 Advertising Cloud

	
 Analytics

	
 Audience Manager

	
 Campaign Standard

	
 Commerce

	
 Experience Cloud

	
 Experience Manager

	
 Experience Platform

	
 Marketo Engage

	
 Target

	
 Workfront

	
 Feedback Program

 Support

 	
 Experience Cloud support

	
 Document Cloud support

	
 Community forums

 Resources

 	
 Adobe Developer

	
 Adobe status

 Adobe Account

 	
 Log in to your account

	
 Manage my account

 Adobe

 	
 About

	
 Careers

	
 Newsroom

	
 Corporate responsibility

	
 Investor Relations

	
 Supply chain

	
 Trust Center

	
 Events

	
 Diversity & Inclusion

	
 Integrity

	
 COVID-19 Responses

 Change language

 Deutsch
 English
 Español
 Français
 Italiano
 Nederlands
 Português
 Svenska
 中文 (简体)
 中文 (繁體)
 日本語
 한국어

 Copyright © 2024 Adobe. All Rights Reserved.

 Privacy

 Terms of Use

 Do not sell my personal information

 AdChoices

