

 Experience League

 Sign In

 Learn

 Courses
 Recommended courses
 Tutorials
 Certification
 Events
 Instructor-led training
 Browse content library
 View all learning options

 Documentation

 Community

 Quick links

 Experience Cloud Advocates

 Meet our community of customer advocates

 Events

 Attend local and virtual events

 Employee Advisors

 Connect with one of our experts

 Experience League Showcase

 Read real-world use cases of Experience Cloud products written by your peers

 Communities by product

 Community home
 Advertising
 Analytics
 Audience Manager
 Campaign Classic v7 & Campaign v8
 Campaign Standard
 Developer
 Experience Cloud
 Experience Manager Sites & More
 Experience Platform
 Journey Optimizer
 Target
 Real-Time Customer Data Platform
 Workfront
 Creative Cloud

 Document Cloud

 Commerce

 Marketo Engage

 Support

 Sign In

 All

 	

 All

	

 Certification

	

 Community

	

 Courses

	

 Documentation

	

 Events

	

 Troubleshooting

	

 Tutorials

 Deutsch
 English
 Español
 Français
 Italiano
 Nederlands
 Português
 Svenska
 中文 (简体)
 中文 (繁體)
 日本語
 한국어

 Adobe Experience Cloud
 Adobe Document Cloud

 Profile
 Profile

 Achievements

 View your awards after completing your profile.

 Bookmarks

 View your bookmarks after completing your profile.

 Sign out

 Learn

 Courses

 Recommended courses

 Tutorials

 Certification

 Events

 Instructor-led training

 Browse content library

 View all learning options

 Search Results

 Documentation

 Community

 Communities by product

 Community home

 Advertising

 Analytics

 Audience Manager

 Campaign Classic v7 & Campaign v8

 Campaign Standard

 Developer

 Experience Cloud

 Experience Manager Sites & More

 Experience Platform

 Journey Optimizer

 Target

 Real-Time Customer Data Platform

 Workfront

 Creative Cloud

 Document Cloud

 Commerce

 Marketo Engage

 Quick links

 Experience Cloud Advocates

 Events

 Employee Advisors

 Experience League Showcase

 Support

 Home

 Opening a case requires entitlement.

 Open Ticket

 Opening a case requires entitlement.

 My Cases

 Request a session

 Profile
 Profile

 Achievements

 View your awards after completing your profile.

 Bookmarks

 View your bookmarks after completing your profile.

 Adobe Experience Cloud
 Adobe Document Cloud
 Search

 Sign Out

 Change language

 Deutsch

 English

 Español

 Français

 Italiano

 Nederlands

 Português

 Svenska

 中文 (简体)

 中文 (繁體)

 日本語

 한국어

 Table of contents

 	

 	AEM 6.4 Forms Guide
	Release Notes
	Release Notes
	New features summary
	Deprecated features

	Getting Started
	Introduction to AEM Forms
	Introduction to authoring adaptive forms
	Introduction to Interactive Communications
	Introduction to managing forms
	Tutorial: Create your First Adaptive Form
	Tutorial: Create your first adaptive form
	Tutorial: Create an adaptive form
	Tutorial: Create form data model
	Tutorial: Apply rules to adaptive form fields l
	Tutorial: Style your adpative form

	Tutorial: Create your First Interactive Communication
	Tutorial: Create your first Interactive Communication
	Tutorial: Plan the Interactive Communication
	Tutorial: Create form data model
	Tutorial: Create document fragments
	Tutorial: Create templates
	Tutorial: Create Interactive Communication

	AEM Forms Reference Collaterals
	Set up and configure AEM Forms reference sites
	We.Finance reference site walkthrough
	We.Gov reference site walkthrough
	Employee self-service reference site walkthrough
	Employee recruitment reference site walkthrough
	We.Finance Auto Insurance Renewal reference site
	We.Gov reference site FOIA walkthrough
	Reference adaptive form fragments
	Reference Themes
	Reference letter templates
	Configure Microsoft Dynamics 365 for the home mortgage workflow of the We.Finance reference site

	Install and configure AEM Forms
	Architecture and deployment topologies for AEM Forms
	Choosing a persistence type for an AEM Forms installation
	Install AEM Forms on OSGi
	Supported platforms for AEM forms on OSGi
	Install and configure document services
	Install and configure data capture capabilities
	Install and Configure Forms-centric workflow on OSGi
	Install and configure Interactive Communications

	Install AEM Forms on JEE
	Supported platforms for AEM forms on JEE
	Installing and Deploying AEM Forms on JEE Using JBoss Turnkey
	Installing and configuring AEM Forms Document Security server
	Preparing to install AEM Forms (Single Server)
	Installing and Deploying Adobe Experience Manager Forms on JEE for JBoss
	Installing and Deploying AEM Forms on JEE for WebLogic
	Installing and Deploying Adobe Experience Manager Forms on JEE for WebSphere
	Install AEM Forms Workbench
	Install and configure Designer
	Preparing to Install AEM Forms (Server Cluster)
	Configuring Adobe Experience Manager Forms on JEE on JBoss Cluster
	Configuring Adobe Experience Manager Forms on JEE on WebLogic Cluster
	Configuring Adobe Experience Manager Forms on JEE on WebSphere Cluster

	Configure AEM Forms
	Performance tuning of AEM Forms server
	Configure adaptive forms cache
	Configuring AEM DS settings
	Configuring the synchronization scheduler
	Configuring the Connector for Microsoft SharePoint
	Connecting AEM Forms with Adobe LiveCycle
	Configuring AEM Forms to submit form data to an AEM Forms on JEE process
	AEM desktop app for AEM Forms

	Upgrade AEM Forms
	Available upgrade paths
	Upgrade AEM Forms on OSGi
	Upgrade to AEM 6.4 forms on OSGi
	Install Compatibility Package
	Migrate AEM Forms assets and documents

	Upgrade AEM Forms on JEE
	Preparing to upgrade AEM Forms
	Adobe Experience Manager Forms on JEE upgrade checklist and planning
	Upgrade to AEM 6.4 forms on JEE
	Upgrading to Adobe Experience Manager Forms on JEE for JBoss
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for JBoss
	Upgrading to AEM Forms on JEE for JBoss Turnkey
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for JBoss Turnkey
	Upgrading to Adobe Experience Manager Forms on JEE for WebLogic
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for WebLogic
	Upgrading to Adobe Experience Manager Forms on JEE for WebSphere
	Upgrading from LiveCycle ES4 SP1 to Adobe Experience Manager Forms on JEE for WebSphere

	Manage AEM Forms
	AEM Forms on OSGi Groups and Privileges
	Create new folders to categorize forms
	Searching for forms and assets
	Manage form metadata
	Download an XFA or a PDF form template
	Deleting forms and related resources
	Getting XDP and PDF documents in AEM Forms
	Importing and exporting assets to AEM Forms
	Supporting new locales for adaptive forms localization
	Handling user data
	Forms-centric workflows on OSGi
	Forms user management
	Forms JEE workflows
	Forms Portal
	Correspondence Management
	Integration with Acrobat Sign
	Document Security

	Hardening AEM Forms Environment
	Hardening and Securing AEM forms on OSGi environment
	General Security Considerations for AEM Forms on JEE
	Hardening Your AEM Forms on JEE Environment
	Configuring Secure Administration Settings for AEM Forms on JEE

	Form Data Model
	Introduction to AEM Forms Data Integration
	Configure data sources
	Microsoft Dynamics Odata configuration
	Create form data model
	Work with form data model
	Use form data model

	Adaptive Forms - Basic Authoring
	Best practices for working with adaptive forms
	Creating an adaptive form
	Adaptive form fragments
	Configuring the Submit action
	Using CAPTCHA in adaptive forms
	Adaptive forms keywords
	Tables in adaptive forms
	Auto-save an adaptive form
	Configuring redirect page
	Creating accessible adaptive forms
	Creating forms with repeatable sections
	Embed an adaptive form or interactive communication in AEM sites page
	Embed adaptive form in external web page
	Inline styling of adaptive form components
	Introduction to multi-step form sequence
	Layout capabilities of adaptive forms
	Placeholder text in AEM Forms
	Previewing a form
	Reusing adaptive forms
	Separator component in adaptive forms
	Apply electronic signatures to a form using scribble signatures
	AEM Forms Keyboard Shortcuts
	Associating submission reviewers with a form
	Authoring in-context help for form fields

	Adaptive Forms - Advanced Authoring
	Creating adaptive forms using JSON Schema
	Creating adaptive forms using XML Schema
	Using Acrobat Sign in an adaptive form
	Creating and using themes
	Adaptive forms rule editor
	API to invoke form data model service from adaptive forms
	Asynchronous submission of adaptive forms
	Create an adaptive form using a set of adaptive forms
	Adaptive Form Templates
	Adaptive Form Expressions
	Generate Document of Record for adaptive forms
	Improve performance of large forms with lazy loading
	Prefill adaptive form fields
	Using SOM expressions in adaptive forms
	Adding information from user data to form submission metadata
	XFA support in XDP-based adaptive forms
	Changing Page Zero content in Designer
	Grant rule editor access to select user groups
	Using AEM translation workflow to localize adaptive forms and document of record
	Automate testing of adaptive forms
	Styling constructs for adaptive forms
	Synchronizing Adaptive Forms with XFA Form Templates
	Integrate Acrobat Sign with AEM Forms
	Creating and managing reviews for assets in forms
	Standard validation error messages for adaptive forms

	Interactive Communications
	Introduction to Interactive Communication authoring UI
	Create an Interactive Communication
	Using charts in Interactive Communications
	Texts in Interactive Communications
	Conditions in Interactive Communications
	Prepare and send Interactive Communication using the Agent UI
	Print channel and web channel
	Interactive Communications configuration properties

	Workflows
	Forms-centric workflow on OSGi
	Forms-centric workflow on OSGi - Step Reference
	Dynamically select a user or group for AEM Forms-centric workflow steps
	Actions and capabilities of Form-centric AEM Workflows on OSGi and AEM Forms JEE workflows
	Initiate Document Services APIs from AEM Workflow

	AEM Forms Workspace
	Introduction to AEM Forms workspace
	Working with AEM Forms workspace
	AEM Forms Workspace Architecture
	Features of AEM Forms workspace not available in Flex workspace
	Features of Flex workspace not available in AEM Forms workspace
	Backbone interaction
	Description of reusable components
	Document details for renderer
	Integrating AEM Forms workspace components in web applications
	New render and submit service
	Understanding the folder structure
	Integrating third-party applications in AEM Forms workspace
	AEM Forms workspace JSON object description
	Introduction to Customizing AEM form workspace
	Generic steps for AEM Forms workspace customization
	Changing the locale of AEM Forms workspace user interface
	Creating a new login screen
	Customizing error dialogs
	Customizing tabs for a task
	Customizing the task details page
	Customizing the listing of process instances
	Customizing Task Actions
	Displaying additional data in ToDo list
	Getting Task Variables in Summary URL
	Customize images used in route actions
	Minification of the JavaScript files
	Customize tracking tables
	Updating the link to the documentation
	Working with Formsets in AEM Forms workspace
	APIs used in AEM Forms workspace
	Initiating a new process with existing process data in AEM Forms workspace
	Hosting two AEM Forms workspace instances on one server
	Changing the color scheme of the interface
	Changing the font on the interface
	Changing the organization logo for branding
	Displaying information in the Task Summary pane
	Displaying the user avatar
	Getting started with AEM Forms workspace
	Managing tasks in an organizational hierarchy using Manager View
	Starting processes
	Tracking processes
	Single Sign On and timeout handlers
	Using an adaptive form in HTML Workspace
	Integrating AEM forms workspace with Microsoft Office SharePoint Server
	Working with To-do lists
	Troubleshooting guidelines for AEM Forms workspace

	AEM Forms app
	Introduction to AEM Forms app
	Set up environment for AEM Forms app
	Set up the Xcode project and build the iOS app
	Building a secure AEM Forms app for iOS
	Set up the Visual Studio project and build the Windows app
	Set up the Android studio project and build the Android app
	Build the AEM Forms Android app
	Distribute AEM Forms app
	Gesture customization
	Branding Customization
	Theme Customization
	Logging in to AEM Forms app
	Home screen
	Synchronizing the app
	Working with a Form
	Working with Startpoints
	Opening a task
	Saving a task or form as a draft
	Using autosave in AEM Forms app
	Save forms as templates
	Adding attachments
	Working in the offline mode
	Updating general settings
	Troubleshoot AEM Forms app

	HTML5 Forms
	Introduction to HTML5 forms
	Getting started with HTML5 forms
	Architecture of HTML5 forms
	Feature differentiation between HTML5 forms and PDF forms
	Frequently asked questions (FAQ) for HTML5 forms
	Designing form templates for HTML5 forms
	Best practices for HTML5 forms
	Designing accessible HTML5 forms
	Generate HTML5 preview of an XDP form
	Rendering form template for HTML5 forms
	Enabling attachments for an HTML5 form
	HTML5 forms service proxy
	Optimizing HTML5 forms
	Screen readers for HTML5 forms
	Creating a custom profile for HTML5 forms
	Right-to-left languages in HTML5 forms
	Integrating Form Bridge with custom portal for HTML5 forms
	Create custom appearances in HTML5 forms
	Changing default styles of HTML5 forms
	Picture clause support for HTML5 forms
	Create accessible complex tables in HTML5 forms
	Creating CSS styles for HTML5 forms
	Customizing error messages for HTML5 forms
	Saving an HTML5 form as a draft
	Enable logging for HTML5 forms
	Debugging HTML5 forms
	Scripting support for HTML5 forms
	Form set in AEM Forms

	Letters and Correspondences
	Correspondence Management Overview
	Layout Design
	Data Dictionary
	Document Fragments
	Create Letter
	Create Correspondence
	Remote functions in Expression Builder
	Manage agent signature images
	Post processing of letters and interactive communications
	Add custom action to the Asset Listing view
	Add custom action/button in Create Correspondence UI
	Add custom properties to Correspondence Management assets
	Customize create correspondence UI
	Customize text editor
	Correspondence Management: Troubleshooting
	APIs to access letter instances
	Integrating Create Correspondence UI with your custom portal
	Custom special characters in Correspondence Management
	Custom watermark in letter PDF preview
	Configuring a Correspondence Management solution
	Inline condition and repeat in Interactive Communications and letters
	Document Fragments
	Correspondence Management Configuration Properties

	Integrate AEM Forms with Experience Cloud solutions
	Create targeted experiences in AEM Forms
	Measure and improve effectiveness and conversion of forms
	Configuring analytics and reports
	View and understand AEM Forms analytics reports
	Create and manage A/B test for adaptive forms

	Publish and process AEM Forms
	Introduction to publishing forms on a portal
	Sample for integrating drafts & submissions component with database
	Configuring storage services for drafts and submissions
	Manage Forms applications and tasks in AEM Inbox
	Watched folder in AEM Forms
	Drafts and submissions component
	Embedding link component in a page
	Publishing and unpublishing forms and documents
	Listing forms on a web page using APIs
	Accessing and filling published forms
	Sending a form submission acknowledgement via email
	Create or Configure a watched folder
	Use custom email templates in an Assign Task step
	Use metadata in an email notification

	Forms Portal
	Customizing templates for forms portal components
	Enabling forms portal components
	Creating a forms portal page
	APIs to work with submitted forms on forms portal
	Custom storage for drafts and submissions component

	Document Services
	Overview of AEM Document Services
	Forms Service
	Output Service
	ConvertPDF Service
	Barcoded Forms Service
	Using Assembler Service
	Use HSM to digitally sign or certify documents
	Using AEM Document Services Programmatically
	Using the sendToPrinter API

	Document Security
	Document security offerings
	Enable AEM to search document security protected PDF documents
	Reader extending policy-protected PDF documents using Portable Protection Library
	Enable AEM to search document security protected PDF and Microsoft Office documents
	Protect a document on behalf of another user

	Forms Designer
	Using Designer
	Designer Quick Start Tutorials
	Designer Samples
	Designer Scripting Basics
	Designer Scripting Reference
	Designer FormCalc Reference
	Using Scribble Signature in HTML5 forms

	Customize AEM Forms
	Appearance framework for adaptive and HTML5 forms
	Creating a custom adaptive form template
	Creating custom layout components for adaptive forms
	Adding custom action on form lister items
	Customize layout and positioning of error messages of an adaptive form
	Creating a custom toolbar action
	Customizing form event tracking
	Create custom appearances for adaptive form fields
	Customizing Draft and Submission data services
	Dynamically populating drop-down lists
	Writing custom Submit action for adaptive forms
	Creating custom toolbar layout
	Displaying components based on the template used
	Creating custom adaptive form themes

	Transaction Reports
	Transaction Reports Overview
	Viewing and Understanding Transaction Reports
	Transaction Reports Billable APIs
	Record a transaction for custom implementations

	Administrator help for AEM Forms on JEE
	Get Started
	General AEM Forms settings
	Update the license type for the deployment

	Setting up and managing domains
	Adding domains
	Delete a domain
	Configure account-locking settings
	Editing and converting existing domains
	Configuring authentication providers
	Synchronizing directories
	Configuring directories

	Configuring User Management
	Change the order of evaluation for authentication
	Configure the LDAP bind password
	Configure AEM forms to prefetch domain information
	Configuring certificate-based authentication
	Configure SAML service provider settings
	Enabling single sign-on in AEM forms
	Configure User Management for an SSL-enabled LDAP server
	Importing and exporting the configuration file
	Configure advanced system attributes
	Preventing CSRF attacks

	Setting up and organizing users
	Adding and configuring users
	Just-in-time user provisioning
	Creating and configuring groups
	Search for a user or group
	Creating and configuring roles

	Connecting to a content management system
	Configuring Connector for EMC Documentum
	Configuring Connector for IBM FileNet
	Configuring Connector for IBM Content Manager
	Configuring Connector for Microsoft SharePoint

	Managing certificates and credentials
	Adding and removing user name and password credentials
	Managing certificate revocationlists
	Basics of managing certificates and credentials
	Managing certificates
	Managing HSM credentials
	Managing local credentials

	Importing and managing applications and archives
	Change the number of items displayed on the Applications and Services pages
	Import and manage archives
	Import and manage applications

	Managing Services
	Configure service settings
	Starting and stopping services

	Managing Endpoints
	Adding, enabling, modifying, or removing endpoints
	Configuring email endpoints
	Configuring Remoting endpoints
	Configuring watched folder endpoints
	Configuring Task Manager endpoints
	Types of endpoints

	Configuring Acrobat Reader DC extensions
	Certificate types used by Acrobat Reader DC extensions
	Recognizing valid and expired certificates in PDF documents
	Configuring Acrobat Reader DC extensions for data capture
	Review credential use information
	Configuring credentials for use with Acrobat Reader DC extensions
	Review the usage rights of a PDF file
	Enabling online commenting for Adobe Reader web browser plug-in
	Setting timeout values for use with Acrobat Reader DC extensions

	Working with PDF Generator
	Introduction to working with PDF Generator
	Enabling multi-threaded file conversions
	Configuring Adobe PDF settings
	Configuring security settings
	Configuring file type settings
	Importing and exporting PDF Generator configuration files
	Enable PDF/A support
	Setting up a PDFG Network Printer (Windows only)
	Configuring fallback fonts
	Modifying the PDF Export conversion settings
	Converting files using PDF Generator

	Configuring SSL
	Overview of configuring SSL
	Configuring SSL for JBoss Application Server
	Configuring SSL on Windows Vista
	Configuring SSL for WebLogic Server
	Configuring SSL for WebSphere Application Server

	Working with document security
	About document security
	High-volume secure information delivery
	Configuring client and server options
	Managing invited and local user accounts
	Controlling access to policy-protected documents
	Monitoring events
	Creating and managing policies
	Using the document security webpages
	Creating and managing policy sets
	Registering as a User

	Configuring Forms
	Basics of configuring forms
	Setting internationalization options
	Configuring caching for Forms
	Specifying XCI configuration options
	Configuring form output
	Specifying fonts to embed
	Configuring locations for Forms
	Specifying security settings
	Configuring validation messages

	Configuring Output
	Overview of output service
	Change the character set
	Specify XCI configuration options
	Configuring caching for Output
	Specify file locations for Output
	Make fonts available
	Specify fonts to embed
	Specify security settings

	Configuring forms workflow
	About administration and process terminology
	Managing Processes
	Configuring Business Calendars
	Overview of Forms workflow
	Configuring Out of Office Settings
	Searching for process instances
	Configuring Server Settings
	Working with stalled operations and branches
	Configuring Shared Queues
	Working with tasks

	Configuring Workspace
	Overview of Workspace
	Importing and exporting global settings
	Setting the message of the day
	Customizing search templates
	Managing the categories displayed in Workspace

	Health Monitor
	Overview of Health Monitor
	Fine-tuning Health Monitor performance
	View statistics related to Work Manager
	View system information
	Purge records from the Job Manager database

	Maintaining AEM forms
	Log files
	User Management
	Monitoring AEM forms deployments
	Work Manager and throttling
	Running AEM forms in maintenance mode

	Maintaining the AEM forms Database
	DB2 database: Running a process weekly
	Oracle database maximum open cursors threshold
	IBM DB2 database: Running commands for regular maintenance
	Purging process data
	Microsoft SQL Server database: Fine-tuning the configuration
	Tips for minimizing database growth

	Maintaining the Application Server
	Application server websites
	Global document storage directory
	Considerations when running AdministrationConsole
	Starting and stopping WebLogic Server
	Enhancing application server performance
	Starting and stopping WebSphere Application Server

	AEM forms Backup and Recovery
	Backing up and recovering the EMC Documentum repository
	Enabling and disabling safe backup mode
	Backing up the AEM forms data
	Files to back up and recover
	Backup and recovery strategy for AEM forms
	PDF Generator backup limitations
	Backup strategies for watched folders
	Recovering the AEM forms data
	Backup strategy for Connector for EMC Documentum users
	Strategy for backup and restore in a clustered environment

	System information service
	Set up the System information service
	System information Service APIs

	Process Reporting
	Introduction to Process Reporting
	Getting Started with Process Reporting
	How Process Reporting Works
	Pre-defined reports in Process Reporting
	Custom Reports in Process Reporting
	Ad-hoc Queries in Process Reporting
	Troubleshooting Process Reporting

	Developer Reference
	Developer basics
	HTML Template Language
	AEM plug-in to debug adaptive forms
	AEM Forms Java API Reference
	AEM Forms on JEE Java API Reference
	Form Bridge APIs for HTML5 forms
	JavaScript Library API reference for Adaptive Forms
	Assembler Service and DDX Reference
	Workbench Help
	Programming with AEM Forms on JEE
	Introduction to programming with AEM Forms on JEE
	Introducing Java API QuickStart
	Invoking AEM Forms using APIs
	Understanding AEM Forms Processes
	Service container

	Java API Quick Start – Code Examples
	Application Manager Client JavaAPI Quick Start(SOAP)
	Application Manager Service JavaAPI Quick Start(SOAP)
	Assembler Service Java API QuickStart(SOAP)
	Acrobat Reader DC extensions ServiceJava API Quick Start(SOAP)
	Backup and Restore Service APIQuick Starts
	Barcoded Forms Service Java APIQuick Start(SOAP)
	Components and Services Java APIQuick Start(SOAP)
	Convert PDF Service Java API QuickStart(SOAP)
	Credential Service Java API QuickStart(SOAP)
	Distiller Service Java API QuickStart(SOAP)
	DocConverter Service Java API QuickStart(SOAP)
	Document Management Service (Deprecated)Java API Quick Start(SOAP)
	Document Security Service JavaAPI Quick Start(SOAP)
	Encryption Service Java API QuickStart(SOAP)
	Endpoint Registry Java API QuickStart(SOAP)
	Form Data Integration Service JavaAPI Quick Start(SOAP)
	Forms Service API Quick Starts
	Generate PDF Service Java API QuickStart(SOAP)
	Invocation API Quick Starts
	LiveCycleProcess Java API(SOAP)Quick Start
	Output Service Java API Quick Start(SOAP)
	PDF Utilities Service Java APIQuick Start(SOAP)
	Repository Service API Quick Starts
	Signature Service Java API QuickStart(SOAP)
	Task Manager Service Java API QuickStart(SOAP)
	User Manager Java API Quick Start(SOAP)
	XMP Utilities Service Java APIQuick Start(SOAP)

	Invoking AEM Forms on JEE using APIs
	Invoking AEM Forms using REST Requests
	Invoking AEM Forms using Remoting
	Invoking AEM Forms using Web Services
	Invoking AEM Forms using Web Services
	Invoking AEM Forms using the JavaAPI
	Creating Flash Builder applicationsthat perform SSO authentication using HTTP tokens

	Performing Service Operations using APIs
	Performing Service Operations Using APIs
	Rendering Forms
	Assembling PDF Documents
	Programmatically Assembling PDF Documents
	Converting Between File Formatsand PDF
	Programmatically Disassembling PDF Documents
	Assembling Encrypted PDF Documents
	Assembling Multiple XDP Fragments
	Assembling Documents Using Bates Numbering
	Assembling Non-Interactive PDF Documents
	Assembling PDF Documents with Bookmarks
	Assigning Usage Rights
	Assembling PDF Portfolios
	Calculating Form Data
	Creating Web Applications thatRenders Forms
	Creating PDF Documents with SubmittedXML Data
	Disassemble a PDF document using the web service API
	Determining Whether Documents Are PDF/A-Compliant
	Dynamically Creating DDX Documents
	Handling Submitted Forms
	Optimizing the Performance of theForms Service
	Passing Documents to the FormsService
	Prepopulating Forms with Flowable Layouts
	Rendering Forms Based on Fragments
	Rendering Forms By Value
	Rendering Forms as HTML
	Rendering Forms at the Client
	Rendering HTML Forms Using Custom CSS Files
	Rendering HTML Forms with CustomToolbars
	Rendering Interactive PDF Forms
	Rendering Rights-Enabled Forms
	Validating DDX Documents
	Converting PDF to Postscript andImage Files
	Converting Postscript to PDF Documents
	Creating Document Output Streams
	Digitally Signing and Certifying Documents
	Encrypting and Decrypting PDF Documents
	Importing and Exporting Data
	Managing Users
	Working with AEM Forms Repository
	Working with barcoded forms
	Working with Credentials
	Working with PDF/A Documents
	Working with PDF Utilities
	Working with XMP Utilities
	Preparing AEM Forms for Backup
	Programmatically Managing Endpoints
	Programmatically managing the Preferences Nodes
	Protecting Documents with Policies
	Validate a DDX document using theweb service API

 	Related Topics
 	

 	Related Content
 	

 Documentation

AEM 6.4

Forms Guide

Converting Between File Formatsand PDF

 Converting Between File Formats and PDF

 Last update: 2023-05-03

 	Topics:

 	Created for:
	
 Developer

CAUTION

AEM 6.4 has reached the end of extended support and this documentation is no longer updated. For further details, see our technical support periods. Find the supported versions here.

About the Generate PDF Service

The Generate PDF service converts native file formats to PDF. It also converts PDF to other file formats and optimizes the size of PDF documents.

The Generate PDF service uses native applications to convert the following file formats to PDF. Unless otherwise indicated, only the German, French, English, and Japanese versions of these applications are supported. Windows only indicates support for only Windows Server® 2003 and Windows Server 2008.

	
Microsoft Office 2003 and 2007 to convert DOC, DOCX, RTF, TXT, XLS, XLSX, PPT, PPTX, VSD, MPP, MPPX, XPS, and PUB (Windows only)

NOTE

Acrobat® 9.2 or later is required to convert Microsoft XPS format to PDF.

	
Autodesk AutoCAD 2005, 2006, 2007, 2008, and 2009 to convert DWF, DWG, and DXW (English only)

	
Corel WordPerfect 12 and X4 to convert WPD, QPW, SHW (English only)

	
OpenOffice 2.0, 2.4, 3.0.1, and 3.1 to convert ODT, ODS, ODP, ODG, ODF, SXW, SXI, SXC, SXD, DOC, DOCX, RTF, TXT, XLS, XLSX, PPT, PPTX, VSD, MPP, MPPX, and PUB

NOTE

The Generate PDF service does not support the 64-bit versions of OpenOffice.

	
Adobe Photoshop® CS2 to convert PSD (Windows only)

 NOTE

 Photoshop CS3 and CS4 are not supported because they do not support Windows Server 2003 or Windows Server 2008.

	
Adobe FrameMaker® 7.2 and 8 to convert FM (Windows only)

	
Adobe PageMaker® 7.0 to convert PMD, PM6, P65, and PM (Windows only)

	
Native formats supported by third-party applications (requires development of setup files specific for the application) (Windows only)

The Generate PDF service converts the following standards-based file formats to PDF.

	Video formats: SWF, FLV (Windows only)
	Image formats: JPEG, JPG, JP2, J2Kí, JPC, J2C, GIF, BMP, TIFF, TIF, PNG, JPF
	HTML (Windows, Sun™ Solaris™, and Linux®)

The Generate PDF service converts PDF to the following file formats (Windows only):

	Encapsulated PostScript (EPS)
	HTML 3.2
	HTML 4.01 with CSS 1.0
	DOC (Microsoft Word format)
	RTF
	Text (both accessible and plain)
	XML
	PDF/A-1a that uses only the DeviceRGB color space
	PDF/A-1b that uses only the DeviceRGB color space

The Generate PDF service requires that you perform these administrative tasks:

	Install required native applications on the computer hosting AEM Forms
	Install Adobe Acrobat Professional or Acrobat Pro Extended 9.2 on the computer hosting AEM Forms
	Perform post-installation setup tasks

These tasks are described in Installing and Deploying AEM forms Using JBoss Turnkey.

You can accomplish these tasks using the Generate PDF service:

	Convert from native file formats to PDF.
	Convert HTML documents to PDF documents.
	Convert PDF documents to file formats.

NOTE

For more information about the Generate PDF service, see Services Reference for AEM Forms.

Converting Word Documents to PDF Documents

This section describes how you can use the Generate PDF API to programmatically convert a Microsoft Word document to a PDF document.

NOTE

For more information about additional file formats, see Adding Support for Additional Native File Formats.

NOTE

For more information about the Generate PDF service, see Services Reference for AEM Forms.

Summary of steps

To convert a Microsoft Word document to a PDF document, perform the following tasks:

	Include project files.
	Create a Generate PDF client.
	Retrieve the file to convert to a PDF document.
	Convert the file to a PDF document.
	Retrieve the results.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, include the necessary JAR files. If you are using web services, ensure that you include the proxy files.

Create a Generate PDF client

Before you can programmatically perform a Generate PDF operation, create a Generate PDF service client. If you are using the Java API, create a GeneratePdfServiceClient object. If you are using the web service API, create a GeneratePDFServiceService object.

Retrieve the file to convert to a PDF document

Retrieve the Microsoft Word document to convert to a PDF document.

Convert the file to a PDF document

After you create the Generate PDF service client, you can invoke the createPDF2 method. This method needs information about the document to convert, including the file extension.

Retrieve the results

After the file is converted to a PDF document, you can retrieve the results. For example, after you convert a Word file to a PDF document, you can retrieve and save the PDF document.

See also

Convert Word documents to PDF documents using the Java API

Convert Word documents to PDF documents using the web service API

Including AEM Forms Java library files

Setting connection properties

Generate PDF Service API Quick Starts

Convert Word documents to PDF documents using the Java API

Convert a Microsoft Word document to a PDF document by using the Generate PDF API (Java):

	
Include project files.

Include client JAR files, such as adobe-generatepdf-client.jar, in your Java project’s class path.

	
Create a Generate PDF client.

	Create a ServiceClientFactory object that contains connection properties.
	Create a GeneratePdfServiceClient object by using its constructor and passing the ServiceClientFactory object.

	
Retrieve the file to convert to a PDF document.

	Create a java.io.FileInputStream object that represents the Word file to convert by using its constructor. Pass a string value that specifies the file location.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Convert the file to a PDF document.

Convert the file to a PDF document by invoking the GeneratePdfServiceClient object’s createPDF2 method and passing the following values:

	A com.adobe.idp.Document object that represents the file to convert.
	A java.lang.String object that contains the file extension.
	A java.lang.String object that contains the file type settings to be used in the conversion. File type settings provide conversion settings for different file types, such as .doc or .xls.
	A java.lang.String object that contains the name of the PDF settings to be used. For example, you can specify Standard.
	A java.lang.String object that contains the name of the security settings to be used.
	An optional com.adobe.idp.Document object that contains settings to be applied while generating the PDF document.
	An optional com.adobe.idp.Document object that contains metadata information to be applied to the PDF document.

The createPDF2 method returns a CreatePDFResult object that contains the new PDF document and a log information. The log file typically contains error or warning messages generated by the conversion request.

	
Retrieve the results.

To obtain the PDF document, perform the following actions:

	Invoke the CreatePDFResult object’s getCreatedDocument method, which returns a com.adobe.idp.Document object.
	Invoke the com.adobe.idp.Document object’s copyToFile method to extract the PDF document from the object created in the previous step.

If you used the createPDF2 method to obtain the log document (not applicable to HTML conversions), perform the following actions:

	Invoke the CreatePDFResult object’s getLogDocument method. This returns a com.adobe.idp.Document object.
	Invoke the com.adobe.idp.Document object’s copyToFile method to extract the log document.

See also

Summary of steps

Quick Start (SOAP mode): Converting a Microsoft Word document to a PDF document using the Java API

Including AEM Forms Java library files

Setting connection properties

Convert Word documents to PDF documents using the web service API

Convert a Microsoft Word document to a PDF document by using the Generate PDF API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/GeneratePDFService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Generate PDF client.

	
Create a GeneratePDFServiceClient object by using its default constructor.

	
Create a GeneratePDFServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/GeneratePDFService?blob=mtom.) You do not need to use the lc_version attribute. However, specify ?blob=mtom.

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the GeneratePDFServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field GeneratePDFServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field GeneratePDFServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.
	Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve the file to convert to a PDF document.

	Create a BLOB object by using its constructor. The BLOB object is used to store the file that you want to convert to a PDF document.
	Create a System.IO.FileStream object by invoking its constructor. Pass a string value that represents the file location of the file to convert and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning to its MTOM property the contents of the byte array.

	
Convert the file to a PDF document.

Convert the file to a PDF document by invoking the GeneratePDFServiceService object’s CreatePDF2 method and passing the following values:

	A BLOB object that represents the file to be converted.
	A string that contains the file extension.
	A java.lang.String object that contains the file type settings to be used in the conversion. File type settings provide conversion settings for different file types, such as .doc or .xls.
	A string object that contains the PDF settings to be used. You can specify Standard.
	A string object that contains the security settings to be used. You can specify No Security.
	An optional BLOB object that contains settings to be applied while generating the PDF document.
	An optional BLOB object that contains metadata information to be applied to the PDF document.
	An output parameter of type BLOB that is populated by the CreatePDF2 method. The CreatePDF2 method populates this object with the converted document. (This parameter value is required only for web service invocation).
	An output parameter of type BLOB that is populated by the CreatePDF2 method. The CreatePDF2 method populates this object with the log document. (This parameter value is required only for web service invocation).

	
Retrieve the results.

	Retrieve the converted PDF document by assigning the BLOB object’s MTOM field to a byte array. The byte array represents the converted PDF document. Ensure you use the BLOB object that is used as the output parameter for the createPDF2 method.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the converted PDF document.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.
	Write the contents of the byte array to a PDF file by invoking the System.IO.BinaryWriter object’s Write method and passing the byte array.

See also

Summary of steps

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Converting HTML Documents to PDF Documents

This section describes how you can use the Generate PDF API to programmatically convert HTML documents to PDF documents.

NOTE

For more information about the Generate PDF service, see Services Reference for AEM Forms.

Summary of steps

To convert an HTML document to a PDF document, perform the following tasks:

	Include project files.
	Create a Generate PDF client.
	Retrieve the HTML content to convert to a PDF document.
	Convert the HTML content to a PDF document.
	Retrieve the results.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, include the necessary JAR files. If you are using web services, ensure that you include the proxy files.

Create a Generate PDF client

Before you can programmatically perform a Generate PDF operation, you must create a Generate PDF service client. If you are using the Java API, create a GeneratePdfServiceClient object. If you are using the web service API, create a GeneratePDFServiceService.

Retrieve the HTML content to convert to a PDF document

Reference HTML content that you want to convert to a PDF document. You can reference HTML content such as an HTML file or HTML content that is accessible using a URL.

Convert the HTML content to a PDF document

After you create the service client, you can invoke the appropriate PDF creation operation. This operation needs information about the document to be converted, including the path to the target document.

Retrieve the results

After the HTML content is converted to a PDF document, you can retrieve the results and save the PDF document.

See also

Convert HTML content to a PDF document using the Java API

Convert HTML content to a PDF document using the web service API

Including AEM Forms Java library files

Setting connection properties

Generate PDF Service API Quick Starts

Convert HTML content to a PDF document using the Java API

Convert an HTML document to a PDF document using the Generate PDF API (Java):

	
Include project files.

Include client JAR files, such as adobe-generatepdf-client.jar, in your Java project’s class path.

	
Create a Generate PDF client.

Create a GeneratePdfServiceClient object by using its constructor and passing a ServiceClientFactory object that contains connection properties.

	
Retrieve the HTML content to convert to a PDF document.

Retrieve HTML content by creating a string variable and assigning a URL that points to HTML content.

	
Convert the HTML content to a PDF document.

Invoke the GeneratePdfServiceClient object’s htmlToPDF2 method and pass the following values:

	A java.lang.String object that contains the URL of the HTML file to be converted.
	A java.lang.String object that contains the file type settings to be used in the conversion. File type settings can include spidering levels.
	A java.lang.String object that contains the name of the security settings to be used.
	An optional com.adobe.idp.Document object that contains settings to be applied while generating the PDF document. If this information is not supplied, the settings are automatically chosen based on the previous three parameters.
	An optional com.adobe.idp.Document object that contains metadata information to be applied to the PDF document.

	
Retrieve the results.

The htmlToPDF2 method returns an HtmlToPdfResult object that contains the new PDF document that was generated. To obtain the newly created PDF document, perform the following actions:

	Invoke the HtmlToPdfResult object’s getCreatedDocument method. This returns a com.adobe.idp.Document object.
	Invoke the com.adobe.idp.Document object’s copyToFile method to extract the PDF document from the object created in the previous step.

See also

Converting HTML Documents to PDF Documents

Quick Start (SOAP mode): Converting HTML content to a PDF document using the Java API

Quick Start (SOAP mode): Converting HTML content to a PDF document using the Java API

Including AEM Forms Java library files

Setting connection properties

Convert HTML content to a PDF document using the web service API

Convert HTML content to a PDF document by using the Generate PDF API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/GeneratePDFService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Generate PDF client.

	
Create a GeneratePDFServiceClient object by using its default constructor.

	
Create a GeneratePDFServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/GeneratePDFService?blob=mtom.) You do not need to use the lc_version attribute. However, specify ?blob=mtom.

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the GeneratePDFServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field GeneratePDFServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field GeneratePDFServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.
	Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve the HTML content to convert to a PDF document.

Retrieve HTML content by creating a string variable and assigning a URL that points to HTML content.

	
Convert the HTML content to a PDF document.

Convert the HTML content to a PDF document by invoking the GeneratePDFServiceService object’s HtmlToPDF2 method and pass the following values:

	A string that contains the HTML content to convert.
	A java.lang.String object that contains the file type settings to be used in the conversion.
	A string object that contains the security settings to be used.
	An optional BLOB object that contains settings to be applied while generating the PDF document.
	An optional BLOB object that contains metadata information to be applied to the PDF document.
	An output parameter of type BLOB that is populated by the CreatePDF2 method. The CreatePDF2 method populates this object with the converted document. (This parameter value is required only for web service invocation).

	
Retrieve the results.

	Retrieve the converted PDF document by assigning the BLOB object’s MTOM field to a byte array. The byte array represents the converted PDF document. Ensure you use the BLOB object that is used as the output parameter for the HtmlToPDF2 method.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the converted PDF document.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.
	Write the contents of the byte array to a PDF file by invoking the System.IO.BinaryWriter object’s Write method and passing the byte array.

See also

Converting HTML Documents to PDF Documents

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Converting PDF Documents to Non-image Formats

This section describes how you can use the Generate PDF Java API and web service API to programmatically convert a PDF document to an RTF file, which is an example of a non-image format. Other non-image formats include HTML, text, DOC, and EPS. When converting a PDF document to RTF, ensure that the PDF document does not contain form elements, such as a submit button. Form elements are not converted.

NOTE

For more information about the Generate PDF service, see Services Reference for AEM Forms.

Summary of steps

To convert a PDF document to any of the supported types, perform the following steps:

	Include project files.
	Create a Generate PDF client.
	Retrieve the PDF document to convert.
	Convert the PDF document.
	Save the converted file.

Include project files

Include necessary files into your development project. If you are creating a client application using Java, include the necessary JAR files. If you are using web services, ensure that you include the proxy files.

Create a Generate PDF client

Before you can programmatically perform a Generate PDF operation, you must create a Generate PDF service client. If you are using the Java API, create a GeneratePdfServiceClient object. If you are using the web service API, create a GeneratePDFServiceService object.

Retrieve the PDF document to convert

Retrieve the PDF document to convert to a non-image format.

Convert the PDF document

After you create the service client, you can invoke the PDF export operation. This operation needs information about the document to be converted, including the path to the target document.

Save the converted file

Save the converted file. For example, if you convert a PDF document to an RTF file, save the converted document to an RTF file.

See also

Convert a PDF document to a RTF file using the Java API

Convert a PDF document to a RTF file using the web service API

Including AEM Forms Java library files

Setting connection properties

Generate PDF Service API Quick Starts

Convert a PDF document to a RTF file using the Java API

Convert a PDF document to an RTF file by using the Generate PDF API (Java):

	
Include project files.

Include client JAR files, such as adobe-generatepdf-client.jar, in your Java project’s class path.

	
Create a Generate PDF client.

Create a GeneratePdfServiceClient object by using its constructor and passing a ServiceClientFactory object that contains connection properties.

	
Retrieve the PDF document to convert.

	Create a java.io.FileInputStream object that represents the PDF document to convert by using its constructor. Pass a string value that specifies the location of the PDF document.
	Create a com.adobe.idp.Document object by using its constructor and passing the java.io.FileInputStream object.

	
Convert the PDF document.

Invoke the GeneratePdfServiceClient object’s exportPDF2 method and pass the following values:

	A com.adobe.idp.Document object that represents the PDF file to convert.
	A java.lang.String object that contains the name of the file to convert.
	A java.lang.String object that contains the name of the Adobe PDF settings.
	A ConvertPDFFormatType object that specifies the target file type for the conversion.
	An optional com.adobe.idp.Document object that contains settings to be applied while generating the PDF document.

The exportPDF2 method returns an ExportPDFResult object that contains the converted file.

	
Convert the PDF document.

To obtain the newly created file, perform the following actions:

	Invoke the ExportPDFResult object’s getConvertedDocument method. This returns a com.adobe.idp.Document object.
	Invoke the com.adobe.idp.Document object’s copyToFile method to extract the new document.

See also

Summary of steps

Quick Start (SOAP mode): Converting HTML content to a PDF document using the Java API

Including AEM Forms Java library files

Setting connection properties

Convert a PDF document to a RTF file using the web service API

Convert a PDF document to an RTF file by using the Generate PDF API (web service):

	
Include project files.

Create a Microsoft .NET project that uses MTOM. Ensure that you use the following WSDL definition: http://localhost:8080/soap/services/GeneratePDFService?WSDL&lc_version=9.0.1.

NOTE

Replace localhost with the IP address of the server hosting AEM Forms.

	
Create a Generate PDf client.

	
Create a GeneratePDFServiceClient object by using its default constructor.

	
Create a GeneratePDFServiceClient.Endpoint.Address object by using the System.ServiceModel.EndpointAddress constructor. Pass a string value that specifies the WSDL to the AEM Forms service (for example, http://localhost:8080/soap/services/GeneratePDFService?blob=mtom.) You do not need to use the lc_version attribute. However, specify ?blob=mtom.

	
Create a System.ServiceModel.BasicHttpBinding object by getting the value of the GeneratePDFServiceClient.Endpoint.Binding field. Cast the return value to BasicHttpBinding.

	
Set the System.ServiceModel.BasicHttpBinding object’s MessageEncoding field to WSMessageEncoding.Mtom. This value ensures that MTOM is used.

	
Enable basic HTTP authentication by performing the following tasks:

	Assign the AEM forms user name to the field GeneratePDFServiceClient.ClientCredentials.UserName.UserName.
	Assign the corresponding password value to the field GeneratePDFServiceClient.ClientCredentials.UserName.Password.
	Assign the constant value HttpClientCredentialType.Basic to the field BasicHttpBindingSecurity.Transport.ClientCredentialType.
	Assign the constant value BasicHttpSecurityMode.TransportCredentialOnly to the field BasicHttpBindingSecurity.Security.Mode.

	
Retrieve the PDF document to convert.

	Create a BLOB object by using its constructor. The BLOB object is used to store a PDF document that is converted.
	Create a System.IO.FileStream object by invoking its constructor and passing a string value that represents the file location of the PDF document and the mode in which to open the file.
	Create a byte array that stores the content of the System.IO.FileStream object. You can determine the size of the byte array by getting the System.IO.FileStream object’s Length property.
	Populate the byte array with stream data by invoking the System.IO.FileStream object’s Read method and passing the byte array, the starting position, and the stream length to read.
	Populate the BLOB object by assigning to its MTOM property the contents of the byte array.

	
Convert the PDF document.

Invoke the GeneratePDFServiceServiceWse object’s ExportPDF2 method and pass the following values:

	A BLOB object that represents the PDF file to convert.
	A string that contains the path name of the file to convert.
	A java.lang.String object that specifies the file location.
	A string object that specifies the target file type for the conversion. Specify RTF.
	An optional BLOB object that contains settings to be applied while generating the PDF document.
	An output parameter of type BLOB that is populated by the ExportPDF2 method. The ExportPDF2 method populates this object with the converted document. (This parameter value is required only for web service invocation).

	
Save the converted file.

	Retrieve the converted RTF document by assigning the BLOB object’s MTOM field to a byte array. The byte array represents the converted RTF document. Ensure you use the BLOB object that is used as the output parameter for the ExportPDF2 method.
	Create a System.IO.FileStream object by invoking its constructor. Pass a string value that represents the location of the RTF file.
	Create a System.IO.BinaryWriter object by invoking its constructor and passing the System.IO.FileStream object.
	Write the contents of the byte array to a RTF file by invoking the System.IO.BinaryWriter object’s Write method and passing the byte array.

See also

Summary of steps

Invoking AEM Forms using MTOM

Invoking AEM Forms using SwaRef

Adding Support for Additional Native File Formats

This section explains how to add support for additional native file formats. It provides an overview of the interactions between the Generate PDF service and the native applications that this service uses to convert native file formats into PDF.

This section also explains the following:

	How to modify the response that the Generate PDF service provides to the native applications that this product already uses to convert native file formats into PDF
	The interactions between the Generate PDF service, the Generate PDF service Application Monitor (AppMon) component, and native applications, such as Microsoft Word
	The roles that XML grammars play in those interactions

Component interactions

The Generate PDF service converts native file formats by invoking the application associated with the file format and then interacting with the application to print the document using the default printer. The default printer must be set up as the Adobe PDF printer.

This illustration shows the components and drivers involved with native application support. It also mentions the XML grammars that influence the interactions.

Component interactions for native file conversion

This document uses the term native application to indicate the application used to produce a native file format, such as Microsoft Word.

AppMon is an enterprise component that interacts with a native application in the same way a user would navigate through the dialog boxes presented by that application. The XML grammars used by AppMon to instruct an application, such as Microsoft Word, to open and print a file involve these sequential tasks:

	Opening the file by selecting File > Open
	Ensuring that the Open dialog box appears; if not, handling the error
	Providing the file name in the File Name field and then clicking the Open button
	Ensuring that the file actually opens
	Opening the Print dialog box by selecting File > Print
	Ensuring that the Print dialog box appears

AppMon uses standard Win32 APIs to interact with third-party applications in order to transfer UI events such as key-strokes and mouse clicks, which is useful to control these applications to produce PDF files from them.

Due to a limitation with these Win32 APIs, AppMon is not able to dispatch these UI events to some specific kinds of windows, such as floating menu-bars (found in some applications such as TextPad), and certain kind of dialogs whose contents cannot be retrieved using the Win32 APIs.

It is easy to visually identify a floating menu-bar; however it might not be possible to identify the special types of dialogs just by visual inspection. You would require a third-party application such as Microsoft Spy++ (part of the Microsoft Visual C++ development environment) or its equivalent WinID (that can be downloaded free of cost from https://www.dennisbabkin.com/php/download.php?what=WinID) to examine a dialog to determine if AppMon would be able to interact with it using standard Win32 APIs.

If WinID is able to extract the dialog contents such as the text, sub-windows, window class ID, and so on, then AppMon would also be able to do the same.

This table lists the type of information used in printing native file formats.

	Information type
	Description
	Modifying/creating entries related to native files

	Administrative settings
	Includes PDF settings, security settings, and file type settings.
File type settings associate file name extensions with the corresponding native applications. File type settings also specify native application settings used to print native files.
	To change settings for an already supported native application, the system administrator sets the File Type Settings in the administration console.
To add support for a new native file format, you must manually edit the file. (See Adding or modifying support for a native file format.)

	Script
	Specifies interactions between the Generate PDF service and a native application. Such interactions usually direct the application to print a file to the Adobe PDF driver.
The script contains instructions that direct the native application to open specific dialog boxes and that supply specific responses to fields and buttons in those dialog boxes.
	The Generate PDF service includes script files for all supported native applications. You can modify these files using an XML editing application.
To add support for a new native application, you must create a new script file. (See Creating or modifying an additional dialog XML file for a native application.)

	Generic dialog box instructions
	Specifies how to respond to dialog boxes that are common to multiple applications. Such dialog boxes are generated by operating systems, helper applications (such as PDFMaker), and drivers.
The file that contains this information is appmon.global.en_US.xml.
	Do not modify this file.

	Application-specific dialog box instructions
	Specifies how to respond to application-specific dialog boxes.
The file that contains this information is appmon.[appname].dialog.[locale].xml (for example, appmon.word.en_US.xml).
	Do not modify this file.
To add dialog box instructions for a new native application, see Creating or modifying an additional dialog XML file for a native application.

	Additional application-specific dialog box instructions
	Specifies overrides and additions to application-specific dialog box instructions. The section presents an example of such information.
The file that contains this information is appmon.[appname].addition.[locale].xml. An example is appmon.addition.en_US.xml.
	Files of this type can be created and modified using an XML editing application. (See Creating or modifying an additional dialog XML file for a native application.)
Important: You must create additional application-specific dialog box instructions for each native application your server will support.

About the script and dialog XML files

Script XML files direct the Generate PDF service to navigate through application dialog boxes in the same way a user would navigate through the application dialog boxes. Script XML files also direct the Generate PDF service to respond to dialog boxes by performing actions such as pressing buttons, selecting or deselecting check boxes, or selecting menu items.

In contrast, dialog XML files simply respond to dialog boxes with the same types of actions used in script XML files.

Dialog box and window element terminology

This section and the next section use different terminology for dialog boxes and the components they contain, depending on the perspective being described. Dialog box components are items such as buttons, fields, and combo boxes.

When this section and the next section describe dialog boxes and their components from the perspective of a user, terms such as dialog box, button, field, and combo box are used.

When this section and the next section describe dialog boxes and their components from the perspective of their internal representation, the term window element is used. The internal representation of window elements is a hierarchy, where each window element instance is identified by labels. The window element instance also describes its physical characteristics and behavior.

From a user’s perspective, the dialog boxes and their components show different behaviors, where some dialog box elements are hidden until activated. From an internal representation perspective, no such issue of behavior exists. For example, the internal representation of a dialog box looks similar to that of the components it contains, with the exception that the components are nested within the dialog box.

This section describes XML elements that provide AppMon with instructions. These elements have names such as the dialog element and the window element. This document uses a monospaced font to distinguish XML elements. The *dialog* element identifies a dialog box that an XML script file can cause to be displayed, either intentionally or unintentionally. The *window* element identifies a window element (dialog box or the components of a dialog box).

Hierarchy

This diagram shows the hierarchy of script and dialog XML. A script XML file conforms to the script.xsd schema, which includes (in the XML sense) the window.xsd schema. Similarly, a dialog XML file conforms to the dialogs.xsd schema, which also includes the window.xsd schema.

Hierarchy of script and dialog XML

Script XML files

A script XML file specifies a series of steps that direct the native application to navigate to certain window elements and then supply responses to those elements. Most responses are text or keystrokes that correspond to the input a user would provide to a field, combo box, or button in the corresponding dialog box.

The intent of the Generate PDF service’s support for script XML files is to direct a native application to print a native file. However, script XML files can be used to accomplish any task that a user can perform when interacting with the native application’s dialog boxes.

The steps in a script XML file are executed in order, without any opportunity for branching. The only conditional test supported is for time-out/retry, which causes a script to terminate if a step does not complete successfully within a specific period of time and after a specific number of retries.

In addition to steps being sequential, the instructions within a step are also executed in order. You must ensure that the steps and instructions reflect the order in which a user would perform those same steps.

Each step in a script XML file identifies the window element that is expected to appear if the step’s instructions are successfully performed. If an unexpected dialog box appears while executing a script step, the Generate PDF service searches the dialog XML files as described in the next section.

Dialog XML files

Running native applications displays different dialog boxes, which appear regardless of whether the native applications are in a visible or invisible mode. The dialog boxes can be generated by the operating system or by the application itself. When native applications are running under control of the Generate PDF service, system and native application dialog boxes are displayed in an invisible window.

A dialog XML file specifies how the Generate PDF service responds to system or native application dialog boxes. The dialog XML files allow the Generate PDF service to respond to unprompted dialog boxes in a way that facilitates the conversion process.

When the system or native application displays a dialog box that is not handled by the currently executing script XML file, the Generate PDF service searches the dialog XML files in this order, stopping when it finds a match:

	appmon.[appname].additional.[locale].xml
	appmon.[appname].[locale].xml (Do not modify this file.)
	appmon.global.[locale].xml (Do not modify this file.)

If the Generate PDF service finds a match for the dialog box, it dismisses it by sending it the keystroke or other action specified for the dialog box. If the instructions for the dialog box specify an abort message, the Generate PDF service terminates the currently executing job and generates an error message. Such an abort message would be specified in the abortMessage element in the script XML grammar.

If the Generate PDF service encounters a dialog box that is not described in any of the previously-listed files, the Generate PDF service incorporates the dialog box’s caption into the log file entry. The currently executing job eventually times out. You can then use the information in the log file to compose new instructions in the additional dialog XML file for the native application.

Adding or modifying support for a native file format

This section describes the tasks you must perform to support other native file formats or to modify support for an already supported native file format.

Before you can add or modify support, you must complete the following tasks.

Choosing a tool for identifying window elements

The dialog and script XML files require you to identify the window element (dialog box, field, or other dialog component) to which your dialog or script element is responding. For example, after a script invokes a menu for a native application, the script must identify the window element on that menu to which keystrokes or an action are to be applied.

You can easily identify a dialog box by the caption it displays in its title bar. However, you must use a tool such as Microsoft Spy++ to identify lower-level window elements. The lower-level window elements can be identified through a variety of attributes, which are not obvious. Additionally, each native application may identify its window element differently. As a result, there are multiple ways of identifying a window element. Here is the suggested order for considering window element identification:

	Caption itself if it is unique
	Control ID, which may or may not be unique for a given dialog box
	Class name, which may or may not be unique

Any one or a combination of these three attributes can be used to identify a window.

If the attributes fail to identify a caption, you can instead identify a window element by using its index with respect to its parent. An index specifies the position of the window element relative to its sibling window elements. Frequently, indexes are the only way to identify combo boxes.

Be aware of these issues:

	Microsoft Spy++ displays captions by using an ampersand (&) to identify the caption’s hot key. For example, Spy++ shows the caption for one Print dialog box as Pri&nt, which indicates that the hotkey is n. Caption titles in script and dialog XML files must omit ampersands.
	Some captions include line breaks. the Generate PDF service cannot identify line breaks. If a caption includes a line break, include enough of the caption to differentiate it from the other menu items and then use regular expressions for the omitted part. An example is (^Long caption title$). (See Using regular expressions in caption attributes.)
	Use character entities (also called escape sequences) for reserved XML characters. For example, use & for ampersands, < and > for less than and greater than symbols, ' for apostrophes, and " for quotation marks.

If you plan to work on dialog or script XML files, you should install the application Microsoft Spy++.

Unpackaging the dialog and script files

The dialog and script files reside in the appmondata.jar file. Before you can modify any of these files or add new script or dialog files, you must unpackage this JAR file. For example, assume that you want to add support for the EditPlus application. You create two XML files, named appmon.editplus.script.en_US.xml and appmon.editplus.script.addition.en_US.xml. These XML scripts must be added to the adobe-appmondata.jar file in two locations, as specified below:

	adobe-livecycle-native-jboss-x86_win32.ear > adobe-Native2PDFSvc.war\WEB-INF\lib > adobe-native.jar > Native2PDFSvc-native.jar\bin > adobe-appmondata.jar\com\adobe\appmon. The adobe-livecycle-native-jboss-x86_win32.ear file is in the export folder at *[AEM forms install directory]*configurationManager. (if AEM Forms is deployed on another J2EE application server, replace the adobe-livecycle-native-jboss-x86_win32.ear file with the EAR file that corresponds to your J2EE application server.)
	adobe-generatepdf-dsc.jar > adobe-appmondata.jar\com\adobe\appmon (the adobe-appmondata.jar file is within the adobe-generatepdf-dsc.jar file). The adobe-generatepdf-dsc.jar file is in the [AEM forms install directory]\deploy folder.

After you add these XML files to the adobe-appmondata.jar file, you must redeploy the GeneratePDF component. To add dialog and script XML files to the adobe-appmondata.jar file, perform these tasks:

	Using a tool such as WinZip or WinRAR, open the adobe-livecycle-native-jboss-x86_win32.earfile > adobe-Native2PDFSvc.war\WEB-INF\lib > adobe-native.jar > Native2PDFSvc-native.jar\bin > adobe-appmondata.jar file.
	Add the dialog and script XML files to the appmondata.jar file or modify existing XML files in this file. (See Creating or modifying a script XML file for a native applicationand Creating or modifying an additional dialog XML file for a native application.)
	Using a tool such as WinZip or WinRAR, open adobe-generatepdf-dsc.jar > adobe-appmondata.jar.
	Add the dialog and script XML files to the appmondata.jar file or modify existing XML files in this file. (See Creating or modifying a script XML file for a native applicationand Creating or modifying an additional dialog XML file for a native application.) After you add the XML files to the adobe-appmondata.jar file, place the new adobe-appmondata.jar file into the adobe-generatepdf-dsc.jar file.
	If you added support for an additional native file format, create a system environment variable that provides the path of the application (See Creating an environment variable to locate the native application.)

To redeploy the GeneratePDF component

	Log in to Workbench.
	Select Window > Show Views > Components. This action adds the Components view to Workbench.
	Right-click the GeneratePDF component, and then select Stop Component.
	When the component has stopped, right-click and select Uninstall Component to remove it.
	Right-click the Components icon and select Install Component.
	Browse for and select the modified adobe-generatepdf-dsc.jar file and then click Open. Notice that a red square appears next to the GeneratePDF component.
	Expand the GeneratePDF component, select Service Descriptors, and then right-click GeneratePDFService and select Activate Service.
	In the configuration dialog box that appears, enter applicable configuration values. If you leave these values blank, default configuration values are used.
	Right-click GeneratePDF and select Start Component.
	Expand Active Services. A green arrow appears next to the service name if it is running. Otherwise, the service is in a stopped state.
	If the service is in a stopped state, right-click the service name and select Start Service.

Creating or modifying a script XML file for a native application

If you want to direct files to a new native application, you must create a script XML file for that application. If you want to modify how the Generate PDF service interacts with a native application that is already supported, you must modify the script for that application.

The script contains instructions that navigate through the native application’s window elements and that supply specific responses to those elements. The file that contains this information is appmon.[appname].script.[locale].xml. An example is appmon.notepad.script.en_US.xml.

Identifying steps the script must execute

Using the native application, determine the window elements that you must navigate and each response you must perform to print the document. Notice the dialog boxes that result from any response. The steps will be similar to these steps:

	Select File > Open.
	Specify the path and then click Open.
	Select File > Print on the menu bar.
	Specify the properties required for the printer.
	Select Print and wait for the Save As dialog box to appear. The Save As dialog box is required for the Generate PDF service to specify the destination for the PDF file.

Identifying the dialogs specified in caption attributes

Use Microsoft Spy++ to obtain the identities of window element properties in the native application. You must have these identities to write scripts.

Using regular expressions in caption attributes

You can use regular expressions in caption specifications. The Generate PDF service uses the java.util.regex.Matcher class to support regular expressions. That utility supports the regular expressions described in java.util.regex.Pattern.

Regular expression accommodating the file name prepended to Notepad in the Notepad banner

 <!-- The regular expression ".*Notepad" means any number of non-terminating characters followed by Notepad. -->
 <step>
  <expectedWindow>
  <window caption=".*Notepad"/>
  </expectedWindow>
 </step>

Regular expression differentiating Print from Print Setup

 <!-- This regular expression differentiates the Print dialog box from the Print Setup dialog box. The "^" specifies the beginning of the line, and the "$" specifies the end of the line. -->
 <windowList>
  <window controlID="0x01" caption="^Print$" action="press"/>
 </windowList>

Ordering the window and windowList elements

You must order window and windowList elements as follows:

	When multiple window elements appear as children in a windowList or dialog element, order those window elements in descending order, with the lengths of the caption names indicating the position in the order.
	When multiple windowList elements appear in a window element, order those windowList elements in descending order, with the lengths of the caption attributes of the first indexes/element indicating the position in the order.

Ordering window elements in a dialog file

 <!-- The caption attribute in the following window element is 40 characters long. It is the longest caption in this example, so its parent window element appears before the others. -->
 <window caption="Unexpected Failure in DebugActiveProcess">
  <…>
 </window>

 <!-- Caption length is 33 characters. -->
 <window caption="Adobe Acrobat - License Agreement">
  <…>
 </window>

 <!-- Caption length is 33 characters. -->
 <window caption="Microsoft Visual.*Runtime Library">
  <…>
 </window>

 <!-- The caption attribute in the following window element is 28 characters long. It is the shortest caption in this example, so its parent window element appears after the others. -->
 <window caption="Adobe Acrobat - Registration">
  <…>
 </window>

Ordering window elements within a windowList element

 <!-- The caption attribute in the following indexes element is 56 characters long. It is the longest caption in this example, so its parent window element appears before the others. -->
 <windowList>
  <window caption="Can't exit design mode because.* cannot be created"/>
  <window className="Button" caption="OK" action="press"/>
 </windowList>
 <windowList>
  <window caption="Do you want to continue loading the project?"/>
  <window className="Button" caption="No" action="press"/>
 </windowList>
 <windowList>
  <window caption="The macros in this project are disabled"/>
  <window className="Button" caption="OK" action="press"/>
 </windowList>

Creating or modifying an additional dialog XML file for a native application

If you create a script for a native application that was not previously supported, you must also create an additional dialog XML file for that application. Every native application that AppMon uses must have only one additional dialog XML file. The additional dialog XML file is required even if no unsolicited dialog boxes are expected. The additional dialog box must have at least one window element, even if that window element is merely a placeholder.

NOTE

In this context, the term additional means the contents of the appmon.[applicationname].addition.[locale].xml file. Such a file specifies overrides and additions to the dialog XML file.

You can also modify the additional dialog XML file for a native application for these purposes:

	To override the dialog XML file for an application with a different response
	To add a response to a dialog box that is not addressed in the dialog XML file for that application

The file name that identifies an additional dialogXML file is appmon.[appname].addition.[locale].xml. An example is appmon.excel.addition.en_US.xml.

The name of the additional dialog XML file must use the format appmon.[applicationname].addition.[locale].xml, where applicationname must exactly match the application name used in the XML configuration file and in the script.

NOTE

None of the generic applications specified in the native2pdfconfig.xml configuration file have a primary dialog XML file. The section Adding or modifying support for a native file format describes such specifications.

You must order windowList elements that appear as children in a window element. (See Ordering the window and windowList elements.)

Modifying the general dialog XML file

You can modify the general dialog XML file to respond to dialog boxes that are generated by the system or to respond to dialog boxes that are common to multiple applications.

Adding a filetype entry in the XML configuration file

This procedure explains how to update the Generate PDF service configuration file to associate file types with native applications. To update this configuration file, you must use administration console to export the configuration data to a file. The default file name for the configuration data is native2pdfconfig.xml.

Update the Generate PDF service configuration file

	Select Home > Services > Adobe PDF Generator > Configuration Files, and then select Export Configuration.
	Modify the filetype-settings element in the native2pdfconfig.xml file, as needed.
	Select Home > Services > Adobe PDF Generator >Configuration Files, and then select Import Configuration. The configuration data is imported into the Generate PDF service, replacing previous settings.

NOTE

The name of the application is specified as the value of the GenericApp element’s name attribute. This value must exactly match the corresponding name specified in the script that you develop for that application. Likewise, the GenericApp element’s displayName attribute should exactly match the corresponding script’s expectedWindow window caption. Such equivalency is evaluated after resolving any regular expressions that appear in the displayName or caption attributes.

In this example, the default configuration data supplied with the Generate PDF service was modified to specify that Notepad (not Microsoft Word) should be used to process files with the file name extension .txt. Before this modification, Microsoft Word was specified as the native application that should process such files.

Modifications for directing text files to Notepad (native2pdfconfig.xml)

 <filetype-settings>

 <!-- Some native app file types were omitted for brevity. -->
 <!-- The following GenericApp element specifies Notepad as the native application that should be used to process files that have a txt file name extension. -->
  <GenericApp
  extensions="txt"
  name="Notepad" displayName=".*Notepad"/>
  <GenericApp
  extensions="wpd"
  name="WordPerfect" displayName="Corel WordPerfect"/>
  <GenericApp extensions="pmd,pm6,p65,pm"
  name="PageMaker" displayName="Adobe PageMaker"/>
  <GenericApp extensions="fm"
  name="FrameMaker" displayName="Adobe FrameMaker"/>
  <GenericApp extensions="psd"
  name="Photoshop" displayName="Adobe Photoshop"/>
  </settings>
  </filetype-settings>

Creating an environment variable to locate the native application

Create an environment variable that specifies the location of the native application executable. The variable must use the format [applicationname]_PATH, where applicationname must exactly match the application name used in the XML configuration file and in the script, and where the path contains the path to the executable in double quotation marks. An example of such an environment variable is Photoshop_PATH.

After creating the new environment variable, you must restart the server on which the Generate PDF service is deployed.

Create a system variable in the Windows XP environment

	Select Control Panel > System.
	In the System Properties dialog box, click the Advanced tab and then click Environment Variables.
	Under System Variables in the Environment Variables dialog box, click New.
	In the New System Variable dialog box, in the Variable name box, type a name that uses the format [applicationname]_PATH.
	In the Variable value box, type the full path and file name of the application’s executable file and then click OK. For example, type: c:\windows\Notepad.exe
	In the Environment Variables dialog box, click OK.

Create a system variable from the command line

	
In a command line window, type the variable definition, using this format:

  [applicationname]_PATH=[Full path name]

For example, type: NotePad_PATH=C:\WINDOWS\NOTEPAD.EXE

	
Start a fresh command line prompt for the system variable to take effect.

XML files

AEM Forms includes sample XML files that cause the Generate PDF service to use Notepad to process any files with the file name extension .txt. This code is included in this section. In addition, you must make the other modifications described in this section.

Additional dialog XML file

This example contains the additional dialog boxes for the Notepad application. These dialog boxes can be in addition to the ones specified by the Generate PDF service.

Notepad dialog boxes(appmon.notepad.addition.en_US.xml)

 <dialogs app="Notepad" locale="en_US" version="7.0" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="dialogs.xsd">
  <window caption="Caption Title">
  <windowList>
  <window className="Button" caption="OK" action="press"/>
  </windowList>
  </window>
 </dialogs>

Script XML file

This example specifies how the Generate PDF service should interact with Notepad to print files by using the Adobe PDF printer.

Notepad script XML file (appmon.notepad.script.en_US.xml)

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--
*
* ADOBE CONFIDENTIAL
* ___________________
* Copyright 2004 - 2005 Adobe Systems Incorporated
* All Rights Reserved.
*
* NOTICE: All information contained herein is, and remains
* the property of Adobe Systems Incorporated and its suppliers,
* if any. The intellectual and technical concepts contained
* herein are proprietary to Adobe Systems Incorporated and its
* suppliers and may be covered by U.S. and Foreign Patents,
* patents in process, and are protected by trade secret or copyright law.
* Dissemination of this information or reproduction of this material
* is strictly forbidden unless prior written permission is obtained
* from Adobe Systems Incorporated.
*-->

<!-- This file automates printing of text files via notepad to Adobe PDF printer. In order to see the complete hierarchy we recommend using the Microsoft Spy++ which details the properties of windows necessary to write scripts. In this sample there are total of eight steps-->

<application name="Notepad" version="9.0" locale="en_US" xmlns:xsi="https://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="scripts.xsd">

 <!-- In this step we wait for the application window to appear -->
 <step>
 <expectedWindow>
 <window caption=".*Notepad"/>
 </expectedWindow>
 </step>

 <!-- In this step, we acquire the application window and send File->Open menu bar, menu item commands and the expectation is the windows Open dialog-->
 <step>
 <acquiredWindow>
 <window caption=".*Notepad">
 <virtualInput>
 <menuBar>
 <selection>
 <name>File</name>
 </selection>
 <selection>
 <name>Open...</name>
 </selection>
 </menuBar>
 </virtualInput>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Open"/>
 </expectedWindow>
 </step>

 <!-- In this step, we acquire the Open window and then select the 'Edit' widget and input the source path followed by clicking on the 'Open' button . The expectation of this 'action' is that the Open dialog will disappear -->
 <step>
 <acquiredWindow>
 <window caption="Open">
 <windowList>
 <window className="ComboBoxEx32">
 <windowList>
 <window className="ComboBox">
 <windowList>
 <window className="Edit" action="inputSourcePath"/>
 </windowList>
 </window>
 </windowList>
 </window>
 </windowList>
 <windowList>
 <window className="Button" caption="Open" action="press"/>
 </windowList>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Open" action="disappear"/>
 </expectedWindow>
 <pause value="30"/>
 </step>

 <!-- In this step, we acquire the application window and send File->Print menu bar, menu item commands and the expectation is the windows Print dialog-->
 <step>
 <acquiredWindow>
 <window caption=".*Notepad">
 <virtualInput>
 <menuBar>
 <selection>
 <name>File</name>
 </selection>
 <selection>
 <name>Print...</name>
 </selection>
 </menuBar>
 </virtualInput>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Print">
 </window>
 </expectedWindow>
 </step>

 <!-- In this step, we acquire the Print dialog and click on the 'Preferences' button and the expected window in this case is the dialog with the caption '"Printing Preferences' -->
 <step>
 <acquiredWindow>
 <window caption="Print">
 <windowList>
 <window caption="General">
 <windowList>
 <window className="Button" caption="Preferences" action="press"/>
 </windowList>
 </window>
 </windowList>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Printing Preferences"/>
 </expectedWindow>
 </step>

 <!-- In this step, we acquire the dialog "Printing Preferences' and select the combo box which is the 10th child of window with caption '"Adobe PDF Settings' and select the first index. (Note: All indeces start with 0.) Besides this we uncheck the box which has the caption '"View Adobe PDF results' and we click on the button OK. The expectation is that 'Printing Preferences' dialog disappears. -->
 <step>
 <acquiredWindow>
 <window caption="Printing Preferences">
 <windowList>
 <window caption="Adobe PDF Settings">
 <windowList>
 <window className="Button" caption="View Adobe PDF results" action="uncheck"/>
 </windowList>
 <windowList>
 <window className="Button" caption="Ask to Replace existing PDF file" action="uncheck"/>
 </windowList>
 </window>
 </windowList>
 <windowList>
 <window className="Button" caption="OK" action="press"/>
 </windowList>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Printing Preferences" action="disappear"/>
 </expectedWindow>
 </step>

 <!-- In this step, we acquire the 'Print' dialog and click on the Print button. The expectation is that the dialog with caption 'Print' disappears. In this case we use the regular expression '^Print$' for specifying the caption given there could be multiple dialogs with caption that includes the word Print. -->
 <step>
 <acquiredWindow>
 <window caption="Print">
 <windowList>
 <window caption="General"/>
 <window className="Button" caption="^Print$" action="press"/>
 </windowList>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Print" action="disappear"/>
 </expectedWindow>
 </step>
 <step>
 <expectedWindow>
 <window caption="Save PDF File As"/>
 </expectedWindow>
 </step>
 <!-- Finally in this step, we acquire the dialog with caption "Save PDF File As" and in the Edit widget type the destination path for the output PDF file and click on the Save button. The expectation is that the dialog disappears-->
 <step>
 <acquiredWindow>
 <window caption="Save PDF File As">
 <windowList>
 <window className="Edit" action="inputDestinationPath"/>
 </windowList>
 <windowList>
 <window className="Button" caption="Save" action="press"/>
 </windowList>
 </window>
 </acquiredWindow>
 <expectedWindow>
 <window caption="Save PDF File As" action="disappear"/>
 </expectedWindow>
 </step>

 <!-- We can always set a retry count or a maximum time for a step. In case we surpass these limitations, PDF Generator generates this abort message and terminates processing. -->
 <abortMessage msg="15078"/>
</application>

 Previous page

 Next page

 On this page

 View next:

 Learn

 Courses

 Recommended courses

 Tutorials

 Certification

 Instructor-led training

 Browse content library

 All Learning

 Search Results

 Documentation

 Documentation home

 Experience Cloud release notes

 Document Cloud release notes

 Community

 Community home

 Advertising Cloud

 Analytics

 Audience Manager

 Campaign Standard

 Experience Cloud

 Experience Manager

 Experience Platform

 Commerce

 Marketo Engage

 Target

 Workfront

 Feedback Program

 Support

 Experience Cloud support

 Document Cloud support

 Community forums

 Resources

 Adobe Developer

 Adobe status

 Adobe Account

 Log in to your account
 Manage my account

 Adobe

 About

 Careers

 Newsroom

 Corporate responsibility

 Investor Relations

 Supply chain

 Trust Center

 Events

 Diversity & Inclusion

 Integrity

 COVID-19 Responses

 Learn

 	
 Courses

	
 Recommended courses

	
 Tutorials

	
 Certification

	
 Instructor-led training

	
 Browse content library

	
 View all learning options

 Documentation

 	
 Documentation home

	
 Experience Cloud release notes

	
 Document Cloud release notes

 Community

 	
 Community home

	
 Advertising Cloud

	
 Analytics

	
 Audience Manager

	
 Campaign Standard

	
 Commerce

	
 Experience Cloud

	
 Experience Manager

	
 Experience Platform

	
 Marketo Engage

	
 Target

	
 Workfront

	
 Feedback Program

 Support

 	
 Experience Cloud support

	
 Document Cloud support

	
 Community forums

 Resources

 	
 Adobe Developer

	
 Adobe status

 Adobe Account

 	
 Log in to your account

	
 Manage my account

 Adobe

 	
 About

	
 Careers

	
 Newsroom

	
 Corporate responsibility

	
 Investor Relations

	
 Supply chain

	
 Trust Center

	
 Events

	
 Diversity & Inclusion

	
 Integrity

	
 COVID-19 Responses

 Change language

 Deutsch
 English
 Español
 Français
 Italiano
 Nederlands
 Português
 Svenska
 中文 (简体)
 中文 (繁體)
 日本語
 한국어

 Copyright © 2024 Adobe. All Rights Reserved.

 Privacy

 Terms of Use

 Do not sell my personal information

 AdChoices

