

Agenda:

- 1. Scalability and AEM Authors
 - 1. Why is it needed?
 - 2. What is meant by "scalability"?
 - 3. Where to focus the efforts?
- 2. What has been done to scale AEM?
- 3. Q & A

The Digital Asset Explosion

Years Ago – Selective in Taking Photos

Years ago, film was expensive and the number of pictures per film pack was low.

As a result, we were much more selective in taking photos.

Today – Proliferation of Photos

Today most of us carry a camera around in our pocket, capable of taking and storing thousands of high-quality photos.

As a result, we are much less selective about the photos we take.

On-Premise AEM to Hosted AEM

On-Premise AEM to Hosted AEM

On-Premise AEM to Hosted AEM

Common Approaches to Application Scalability

Vertical Scalability

Horizontal Scalability

Data Partitioning

The Architecture of AEM – What Needs to Scale?

The Core of AEM – Apache Jackrabbit Oak

Apache Jackrabbit Oak (Content Repository)

Separating Data Storage from Oak

Separating Data Storage from Oak

Apache Oak

Node Store

Blob Store

CAP Theorem

CAP Theorem and AEM

Scaling the Blob Store

Scalable blob storage is a solved problem.

Scaling the Node Store with MongoDB

Scalable database storage is a solved problem.

Scalable database storage is a solved problem...? What is the consistency model of MongoDB?

write=0

MongoDB Node write=0 write=1

write=0 write=1

write=0 write=1

write=0

write=1

write=2

write=3

write=0

write=1

write=2

write=3

Math and physics says there are limits to how far you can reasonably scale a database.

Microservices!!!

We should microservice Oak.

What is a Microservice?

- Small, autonomous services that work together¹
- Single Responsibility Principle
- Independently deployable, manageable, and scalable
- Loose couplings
 - No shared data

Splitting Oak into Microservices

- What are Oak's responsibilities?
- How do you split the data for Oak?

Microservices???

Should we microservice Oak?

Takeaway

Microservices are inseparable from their data.

Scalability Challenge Number One

You cannot split a data store into true microservices.

Splitting out AEM Functionality

Splitting out AEM Functionality

Problem Solved

Problem Solved...???

Scalability Challenge Number Two

LAN infrastructure may limit the ability to scale effectively.

Be clear about the benefits you hope to gain when refactoring for scalability.

Problem Solved...???

Scaling the Ingestion Process

Is it worth the expense?

- Research message queueing systems to determine best fit
- 2. Adding a message queueing system
- 3. Modify code to use a queue
- 4. Modify code to us an asynchronous model
- Split codebase into distinct services
- 6. Run services on separate infrastructure
- 7. Testing

What limits AEM performance? Is AEM CPU bound or I/O bound?

What We Learned: More Server Disk I/O = More Performance

What We Learned: More Server RAM = More Disk I/O Performance

Priority

- 1. LAN bandwidth, including WiFi
- 2. Server Disk IO

Individual spinning hard disks are not useful for large deployments.

3. Server RAM

Unused RAM improves Disk IO

4. Server CPU

What We Learned: Vertical Scaling – More Effective than Horizontal Scaling

What We Learned: Vertical Scaling – More Effective than Horizontal Scaling

Can Vertical Scalability Really Be the Answer?

Takeaway

Sometimes, vertical scalability is the answer.

Separating Workflow Processing Reduces Performance

Scaling the Ingestion Process

Don't rely on assumptions.

Prove your assumptions before you invest in a major architectural redesign.

Take the time to understand the best way to partition your application space.

Scalability Challenge Number Three

The nature of the data may change the rules about scalability.

Three Scalability Challenges

• You cannot split a datastore into true microservices.

LAN infrastructure may limit your ability to scale effectively.

The nature of the data may change the rules about scalability.

Takeaways

- Math and physics says there are limits to how far you can reasonably scale a database.
- Microservices are inseparable from their data.
- Be clear about the benefits you hope to gain when refactoring for scalability.
- Don't rely on assumptions. Prove your assumptions before you invest in a major architectural redesign.
- Sometimes vertical scalability is the answer.
- Take the time to understand the best way to partition your application space.

Adobe

Trademarks, Disclaimers, Attributions

- Adobe, the "Adobe" logo, Creative Cloud, Experience Manager, and InDesign are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.
- Amazon Web Services, the "Powered by Amazon Web Services" logo, AWS, EC2, S3, and SQS are trademarks of Amazon.com, Inc. or its affiliates in the United States and/or other countries.
- All other trademarks are the property of their respective owners
- "Experiments in AEM Author Scalability" is an independent publication and is neither affiliated with, nor authorized, sponsored, or approved by, Microsoft Corporation.
- [1] Newman, S. (2015). *Building Microservices*. Sebastopol, CA: O'Reilly.

