Perguntas frequentes sobre Atribuição

O que é o item de linha “Nenhum” na atribuição?

O item de linha “Nenhum” é um item “catch-all” (global) que representa todas as conversões que ocorreram sem nenhum ponto de contato na janela de retrospectiva. Para reduzir o número de conversões atribuídas ao item de linha “Nenhum”, tente usar uma janela de pesquisa personalizada com um período de pesquisa posterior mais longo.

Por que às vezes vejo datas fora da minha janela de relatórios ao usar modelos de atribuição?

Algumas métricas baseadas em visitas, como Entradas ou Taxa de rejeição, podem atribuir dados a um período anterior ao intervalo de datas de início da janela de relatórios. Essa situação se deve aos modelos de atribuição que usam uma janela de pesquisa, que determina a aparência da atribuição anterior para conceder crédito por métricas. O cenário mais comum é quando as visitas abrangem a meia-noite. Por exemplo:

  1. Um usuário visita sua página inicial às 23h55 do dia 7 de setembro.
  2. Eles visitam várias páginas, a última às 12h05 em 8 de setembro.
  3. Uma semana depois, você executa um relatório de tendências diárias com o intervalo de datas de 8 a 14 de setembro.

Métricas baseadas em ocorrências, como Visualizações de página, produziriam a saída esperada; a tendência diária dos dados é de 8 a 14 de setembro. No entanto, as métricas baseadas em visitas também mostrariam a visita acima em 7 de setembro. A entrada atribuída à visita ocorreu em 7 de setembro, e a janela de pesquisa por padrão é de 1° a 31 de setembro.

A taxa de rejeição sempre mostra 0% em 7 de setembro neste exemplo. Essa métrica é definida como Bounces divided by Entries, uma métrica baseada em ocorrência dividida por uma métrica baseada em visita. Rejeições consistem em uma única solicitação de imagem, de modo que não podem se estender por vários dias, Qualquer rejeição ocorrida em 7 de setembro ocorreu fora da janela de relatórios, causando a taxa de rejeição garantida de 0% para esse dia. Outras métricas baseadas em ocorrências também mostrariam 0 para 7 de setembro neste relatório, já que essas ocorrências também não estão na janela de relatórios.

Considere outro exemplo semelhante. A única diferença entre o exemplo a seguir e o acima são as datas:

  1. Um usuário visita sua página inicial às 23h55 em 31 de agosto.
  2. Eles visitam várias páginas, a última às 12h05 do dia 1° de setembro.
  3. Uma semana depois, você executa um relatório de tendência diária com intervalo de datas de 1° a 7 de setembro.

Neste exemplo, Entradas e Taxa de rejeição não exibiriam dados de 31 de agosto. A janela de pesquisa e a janela de relatórios iniciam no dia 1° de setembro, portanto os dados não podem ser atribuídos a partir do dia 31 de agosto.

Quando devo usar retrospectiva de visita, visitante ou atribuição personalizada?

A escolha da retrospectiva de atribuição depende do seu caso de uso. Se as conversões normalmente levam mais tempo do que uma visita única, recomenda-se a retrospectiva de visitante ou personalizada. Para ciclos de conversão mais longos, as janelas de retrospectiva personalizadas são melhores, pois são o único tipo que pode extrair dados antes da janela de relatórios.

Como funciona a comparação de props e eVars na atribuição?

A atribuição é recalculada no tempo de execução do relatório, portanto, não há diferença entre prop e eVar (ou qualquer outra dimensão) para fins de modelagem de atribuição. As props podem persistir usando qualquer janela de retrospectiva ou modelo de atribuição, e as configurações de alocação/expiração de eVar são ignoradas.

Os modelos de atribuição estão disponíveis em outros recursos do Analytics, como Feeds de dados ou Data Warehouse?

Não. Os modelos de atribuição usam o processamento de tempo do relatório, que só está disponível no Analysis Workspace. Consulte Processamento de tempo do relatório para obter mais informações.

Os modelos de atribuição estão disponíveis somente se uso um conjunto de relatórios virtual com o processamento de tempo ativado?

Os modelos de atribuição estão disponíveis fora dos conjuntos de relatórios virtuais. Estes usam o processamento de tempo do relatório no backend, enquanto os modelos de atribuição estão disponíveis tanto para os conjuntos de relatórios padrão como para os conjuntos de relatórios virtuais.

Que dimensões e métricas são incompatíveis?

O painel de atribuição é compatível com todas as dimensões. As métricas não compatíveis incluem as seguintes:

  • Todas as métricas calculadas
  • Visitantes únicos
  • Visitas
  • Ocorrências
  • Exibições de página
  • Métricas do A4T
  • Métricas de tempo gasto
  • Rejeições
  • Taxa de rejeição
  • Entradas
  • Saídas
  • Páginas não encontradas
  • Pesquisas
  • Visitas em única página
  • Acesso único

A atribuição funciona com classificações?

Sim, as classificações são totalmente compatíveis.

A atribuição funciona com fontes de dados?

Sim, a maioria das fontes de dados é compatível. A atribuição não é possível com fontes de dados de nível de resumo porque elas não se vinculam a um identificador de visitante do Analytics. Fontes de dados de ID de transação também são compatíveis, a menos que sejam usadas em um conjunto de relatórios virtual com o processamento de tempo de relatório ativado.

A atribuição funciona com a integração do Advertising Analytics?

As dimensões de metadados, como tipo de correspondência e palavra-chave, funcionam com atribuição. No entanto, as métricas (incluindo impressões, custo, cliques, posição média e pontuação de qualidade média) usam fontes de dados de nível de resumo e, portanto, são incompatíveis.

Como a atribuição funciona com canais de marketing?

Quando os canais de marketing foram introduzidos pela primeira vez, eles só contavam com as dimensões de primeiro e último contato. As dimensões explícitas de primeiro/último toque não são mais necessárias com a versão atual da atribuição. A Adobe fornece dimensões genéricas de "Canal de marketing" e "Detalhes do canal de marketing" para que você possa usá-las com o modelo de atribuição desejado. Essas dimensões genéricas se comportam de forma idêntica às dimensões do Canal de último contato, mas são rotuladas de forma diferente para evitar confusão em caso de uso de canais de marketing com um modelo de atribuição diferente.

Como as dimensões do canal de marketing dependem de uma definição de visita tradicional (conforme definido por suas regras de processamento), a definição de visita não pode ser alterada usando conjuntos de relatórios virtuais.

Como a atribuição funciona com variáveis de vários valores, como vars de lista?

Algumas dimensões do Analytics podem conter vários valores em uma só ocorrência. Exemplos comuns incluem list vars e a variável products.

Quando a atribuição é aplicada a ocorrências de vários valores, todos os valores na mesma ocorrência recebem o mesmo crédito. Como muitos valores podem receber esse crédito, o total do relatório pode ser diferente se você somar cada item de linha individual. O total do relatório é deduplicado, enquanto cada item de dimensão individual recebe o crédito adequado.

Como a atribuição funciona com a segmentação?

A atribuição sempre é executada antes da segmentação e a segmentação é executada antes da aplicação dos filtros do relatório. Esse conceito também se aplica a conjuntos de relatórios virtuais (VRS) que usam segmentos.

Por exemplo, se você criar um VRS com um segmento “Exibir ocorrências” aplicado, poderá ver outros canais em uma tabela usando alguns modelos de atribuição.

Conjunto de relatórios virtuais “somente exibição”

OBSERVAÇÃO

Se um segmento suprimir ocorrências que contenham sua métrica, essas instâncias de métrica não serão atribuídas a nenhuma dimensão. No entanto, um filtro de relatório semelhante simplesmente ocultará alguns itens de dimensão, sem qualquer impacto nas métricas processadas de acordo com o modelo de atribuição. Como resultado, um segmento pode retornar valores menores que um filtro com uma definição comparável.

Nesta página

Adobe Summit Banner

A virtual event April 27-28.

Expand your skills and get inspired.

Register for free
Adobe Summit Banner

A virtual event April 27-28.

Expand your skills and get inspired.

Register for free
Adobe Maker Awards Banner

Time to shine!

Apply now for the 2021 Adobe Experience Maker Awards.

Apply now
Adobe Maker Awards Banner

Time to shine!

Apply now for the 2021 Adobe Experience Maker Awards.

Apply now