Adobe Analytics Data Visualization Playbook.

The Art and Science of Data Visualization.

The two objectives of data visualization, analysis and storytelling, are essential skills for an analyst.

- Data analysis is the science of exploring data in an attempt to derive useful information.
- Data storytelling is the art of effectively conveying that information to an outside audience.

Getting good at data visualization is both an art and a science. There are a variety of factors to consider when making visualization decisions. This playbook walks through use cases of when you should pick one visualization over another. It provides a list of common visualization objectives along with examples.

These are guidelines, not rules. And for many of these rules, you'll probably be able to think of counterexamples. That's fine. Just be thoughtful about your visualizations. Play around with them, and try a couple options to see what works best.

Table of contents

I want to show how a metric changes over time.
... with 4 or more metrics.
... where dimension values should add up to a total.
... with metrics of a different scale.
I want to compare values within a dimension.
... where values add up to a 100%.
... where values add up to a total.
I want to explore how users are navigating through my site.

I want to evaluate the performance of
a conversion funnel.
I want to monitor progress towards a goal.
I want to show the distribution of a variable.
I want to highlight a single metric value or change in value.

I want to show where visitor traffic is coming from geographically.

I want to explore how visit or visitors overlap.
I want to show how two metrics are correlated based on different dimension values.

I want to see how different groups of visitors return 15 to the site over time.

I want to show how a metric changes over time.

Continuous datasets (or time-series data) is best represented with a line or area chart. If you are able to group that data into meaningful categories (e.g., month), then you could also use a bar chart.

Example: Site visits trended monthly over the last six months.

Line chart

This is the default way to display time series data in Analysis Workspace. It can handle the most complexity of any time series visualization.

Area chart

- This is a line chart with the space below shaded in. Under certain conditions, an area chart might be easier to read than a line chart.

Bar chart

Instead of a continuous line, a bar chart calls out each data point distinctly.
Use this when you want to call out your data points.

I want to show how a metric changes over time. ...with 4 or more metrics.

Maybe you need to show how a lot of metrics are trending over time. This can easily lead to an overcrowded visualization. There's not a common "best" option for displaying this type of data, though a standard line chat will usually get the job done. If possible, spend a little extra time making your visualization as readable as possible.

Example: Weekly visits by marketing channel.

Good

Line chart

The basic line chart is almost always going to be your best option when displaying four or more different trendlines.

Bad

Bar chart
My rule of thumb with trended bar charts is no more than two metrics. But sometimes rules are meant to be broken.

Unappealing

Area chart

In some cases, four or more metrics in an area chart might be ok. But if it's hard to read, use another option. Make sure to indicate this is not stacked, since with area charts there is no clear difference between standard and stacked.

I want to show how a metric changes over time.

...where dimension values should add up to a total.

Sometimes your metrics should add up to a total at the top. For this, you'll use the stacked version of area and bar charts. Note that these charts make it easy to see changes in the total but make it more difficult to tell changes in an individual dimension value.

Example: Weekly visits by marketing channel.

Stacked area chart

The stacked area chart looks cleaner than the stacked bar chart, especially as you increase the number of data points along the x-axis.

Stacked bar chart

The stacked bar makes it a little easier to see changes in individual dimension items than the stacked area. If that's important, consider this chart.

I want to show how a metric changes over time.

...with metrics of a different scale.
What if the metrics you want to trend are on completely different scales? A common example is when you want to display a whole number metric, like page views, alongside a "rate" metric like Bounce Rate.

Analysis Workspace makes this possible with a few different visualizations. However, you are limited to two total metrics in the chart.

Example: Page views and bounce rate trended weekly over the last 12 full weeks.

Good

2500% The area chart again is very similar ${ }^{2000 \%}$ to the line chart. It gives a little more 500\% weight to the trendline.

Bad

Dual axis bar chart
While you can create a dual axis bar chart, you shouldn't use it for time series data. It's too difficult to read. Instead, use a dual axis bar chart to compare dimension values (see below).

Advanced Combo chart

This may be the best dual axis visualization option. Combining two chart types - line and bar - further differentiates the metrics, making it clear they are not the same thing.

want to compare values within a dimension.

Another common visualization goal is to compare dimension values for a given metric. This gives us more visualization options since we now have control over what goes into the x-axis.

Example: Visits by marketing channel.

Horizontal bar chart

The horizontal bar charts are great because of their efficient use of space. Notice how the value titles on the y-axis fit neater than in the bar chart above.

Example: Top 20 pages.

Bad
Bar chart
When you have this many dimension values to compare, it's best to use a freeform table.

I want to compare values within a dimension.

...where values add up to 100%.

Example: Visits by mobile device type.

Good

Donut chart

(1) Pie charts and donut charts get a lot of grief. However, when you're looking at four or fewer values, they can be an easy way to show how given values make up the total pie (or donut).

Tip: When looking at mobile device type in a visualization, update the default "Other" to be "Desktop/Laptop."

Example: Visits by mobile device type by day of the week.
Note: Make sure to check the " 100% Stacked" box in the gear option menu.

Example: Visits by marketing channel.
Note: In this case, we have 12 dimension values (i.e., marketing channels). Treemap is the only good visualization that shows how that many dimension values add up to a total.

- Donut

Bad

Donut chart
Do not use a donut chart when you have more than four dimension values. There are better ways of visualizing this data.

Advanced
Treemap
An underutilized "donut chart" equivalent that does allow for the inclusion of many dimension values is treemap.

I want to compare values within a dimension.

...where values add up to a total.
This is similar to the previous use case (where values add up to 100\%), but here we are more interested in the aggregated total than we are in the makeup of the total.

Example: Top 5 marketing channels by mobile device type.
Good
Stacked bar chart

Good
Horizontal stacked bar chart
It's easier to see how mobile phone and tablet are contributing thanks to there being more horizontal space.

I want to explore how users are navigating through my site.

Example: How are people navigating to and from the home page?

I want to evaluate the performance of a conversion funnel.

Example: Evaluate visitors going from a product view to a cart addition to a checkout.

I want to monitor progress toward a goal.

Example: Site visit goal.

- Bullet

Bullet

If you have predefined goals for a given metric, a bullet chart is a great way to visualize progress to that goal. The x-axis can display as either a total number or percentage.

want to show the distribution of a variable.

When a mean or median doesn't provide enough information (or is potentially misleading), showing the distribution of a metric can be helpful.

Example: How many product views do visits with a cart addition have compared to visits without a cart addition.

I want to highlight a single metric value or change in value.

Example: Show visits and month-over-month change in visits.

Summary number

- Summary number

474,975
Use this when you want to call out an important number. Make sure to lock selection.

© Summary change

 7.1\%

 7.1\%}

Summary change

Use this to show a percent change. Select the comparison number first and then the new number. Make sure to lock selection.

Visits : Mar 2023

Advanced
 Key metric summary

Use this to show both a summary
change, summary number, and trendline all in one visualization. Play around with the options until it looks how you want.

I want to show where visitor traffic is coming from geographically.

Example: How many visits are we getting from across the United States?

Map (heatmap)

Use the heatmap version of the map visualization to get a quick idea of where your visits are coming from geographically.

Map (bubbles)

Use the bubbles version of the map visualization to see the actual number of visits coming from different locations.

I want to explore how visits or visitors overlap.

Example: Show the overlapping marketing channel mix of visitors to our website.

- Venn

Paid Marketing
Channels Visits + Unique Visitors ■ 697k

Owned Marketing
Channel Visits + Unique Visitors - 505k

Other Visits + Unique ${ }^{2}$
Visitors

- 328 k

Good

Venn diagram

This shows how the same visitors come to the site through different marketing channels.

I want to show how two metrics are correlated based on different dimension values.

Example: How do marketing channels compare based on two metrics: bounce rate and checkouts per visit?

I want to see how different groups of visitors return to the site over time.

Example: How many weeks after a visit does a checkout occur?

Advanced

Cohort table

The conditional formatting helps us quickly identify which cohorts are most effective at driving checkouts after a visit.

Example: What desktop browser is driving the highest rate of return visits?

Example: When did visitors visit before and after a cart addition?

- Cohort table

Retention: Latency table
Inclusion: Cart Additions >=1 Return: Visits $>=1$,

Advanced
 Cohort table

Try using a dimension-based cohort to compare return visits from the various dimension values.

Author

This document was created by David Geist, data and insights business consultant at Adobe.

Advanced

Cohort table

Use a latency table to show how many visits occurred leading up to and then after the inclusion event.

